Crowdsourcing with Multi-Dimensional Trust

Crowdsourcing with Multi-Dimensional Trust

Title : Crowdsourcing with Multi-Dimensional Trust
Authors :
Liu, Xiangyang
Baras, John, S.
Conference : International Conference on Information Fusion (FUSION 2015) pp. 574-581
Date: July 06 - July 09, 2015

We consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers’ expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker’s performance is not sufficient to reflect the worker’s trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Finally, we evaluate our model on real-world datasets and demonstrate that our model is superior to state-of-the-art and the two extended models have even better performance. In addition, our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers’ trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them.

Download Full Paper