Collaborative Cloud-Edge-Local Offloading for Multi-Component Applications

Collaborative Cloud-Edge-Local Offloading for Multi-Component Applications

Title : Collaborative Cloud-Edge-Local Offloading for Multi-Component Applications
Authors :
No items found
Conference : The Sixth ACM/IEEE Symposium on Edge Computing - The 2nd Workshop on Edge Computing and Communications (EdgeComm) (EdgeComm 2021) pp. 361-365 , San Jose, CA
Date: December 14 - December 17, 2021

With the explosion of intelligent and latency-sensitive applications such as AR/VR, remote health and autonomous driving, mobile edge computing (MEC) has emerged as a promising solution to mitigate the high end-to-end latency of mobile cloud computing (MCC). However, the edge servers have significantly less computing capability compared to the resourceful central cloud. Therefore, a
collaborative cloud-edge-local offloading scheme is necessary to accommodate both computationally intensive and latency-sensitive mobile applications. The coexistence of central cloud, edge servers and the mobile device (MD), forming a multi-tiered heterogeneous architecture, makes the optimal application deployment very challenging especially for multi-component applications with component dependencies. This paper addresses the problem of energy and latency efficient application offloading in a collaborative cloud-edgelocal environment. We formulate a multi-objective mixed integer linear program (MILP) with the goal of minimizing the systemwide energy consumption and application end-to-end latency. An approximation algorithm based on LP relaxation and rounding is proposed to address the time complexity. We demonstrate that our approach outperforms existing strategies in terms of application request acceptance ratio, latency and system energy consumption.

Download Full Paper