Coalition Formation through Learning in Autonomic Networks

Coalition Formation through Learning in Autonomic Networks

Title : Coalition Formation through Learning in Autonomic Networks
Authors :
Jiang, Tao
Baras, John, S.
Conference : International Conference on Game Theory for Networks (GameNets09) pp.10-16
Date: May 13 - May 15, 2009

Autonomic networks rely on the cooperation of participating nodes for almost all their functions. However, due to resource constraints, nodes are generally selfish and try to maximize their own benefit when participating in the network. Therefore, it is important to study mechanisms, which can be used as incentives for cooperation inside the network. In this paper, the interactions among nodes are modeled as games. A node joins a coalition if it decides to cooperate with at least one node in the coalition. The dynamics of coalition formation proceed via nodes that interact strategically and adapt their behavior to the observed behavior of others. We present conditions that the coalition formed is stable in terms of Nash stability and the core of the coalitional game.

Download Full Paper