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Abstract

In this paper we present a solution to the ro-
bust Ho, output feedback control problem for
bilinear systems over a finite time interval. The
solution is obtained through the use of the in-
formation state method. We discuss the relation
of the information state controller with the cer-
tainty equivalence controller under smoothness
and uniqueness assumptions. Finally, numerical
examples are provided to illustrate implementa-
tion issues of t}ie information state feedback con-
troller.

1. Introduction

The study of robust H,., output feedback con-
trol for nonlinear systems has attracted increas-
ing interest over the last few years. As a gen-
eralization of the results from linear theory, the
solution to the output feedback problem has been
Eostulated to involve a nonlinear observer com-

ined with a controlled dissipation inequa.lig
for an augmented system. By postulating su
a structure and solving an augmented dynamic
game problem, several researchers [1], [5], [12]
have established results yielding sufficient condi-
tions for the existence of a solution to the robust
H, output feedback control problem.

In [6], a solution to the partially observed risk
sensitive stochastic control for nonlinear systems
is obtained and a close connection between it and
a partially observed dynamic game is discovered.
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Motivated by the results for the risk sensitive
control, the authors in [7], [11], and [8] obtain a
solution to the robust H, output feedback con-
trol problem for nonlinear systems which is both
necessary and sufficient. The novelty of the ap-
proach developed in these papers is the use of an
information state to convert the original output
feedback control problem into a new equivalent
one with full state. The information ‘state is,
in general, an infinite dimensional state obeying
a dynamic programming equation (DPE) which
evolves forward in time. In the equivalent full
state problem, the information state serves as
the appropriate state, and the problem is solved
using dynamic programming methods, in which
a value function is defined in terms of the in-
formation state. The difficulty associated with
this approach is that, in general, the solution to
the problem is, in a sense, doubly infinite dimen-
sional. For convenience, we shall call this method
the information state approach.

In this paper we address the problem of finite
time horizon, robust H,, output feedback con-

" trol of bilinear systems. For our purposes bilin-
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ear systems are of particular interest since, as
we shall see, they beﬁong to the class of systems
with finite dimensional information state [9].
This fact allows us to use dynamic programming
methods for finite dimensional systems. This pa-
per is organized as follows. A statement of the
problem we consider is given in §2, and a refor-
mulation of the problem in terms of a dynamic
game is given in §3. In §4, we present the infor-
mation state solution to the problem. In ?5 the
relation between the information state solution
and the certainty equivalence controller proposed
in [2], [3], is explored. In §6 numerical examples



are presented to show that the above-mentioned
value function has nontrivial domain, and to
demonstrate the stabilizing and robustness prop-
erties of the information state controller.

2. Problem Statement

We consider the class of bilinear systems, de-
noted by X*, described by the following state
space equation

£H1) = Aut)e(t)+ Bu(t) + (1),
y(t) = Cz(t)+v(t), (1)
2(t) = Cz(t)+ Du(t),

with 2(0) = zo € R", where 4,(t) = Ay +

i=1 Aiui(t), and where we assume D'[C D]
= [0 R}, R > 0, and write C'C = Q. We as-
sume that the state z(t) € R™ is not directly
measured and that the initial condition zo € R®

is unknown. At time ¢ > to, knowledge of the
state is obtained only throug‘h the observations

history y(s) € R?,s € [to,t]. The additional
output z(t) € R™*™ is a performance measure.
The admissible controls u = [uy,...up) take val-

ues in U = R™ and are restricted to be non-
anticipating functions of the observation path y.
The class of such controllers is denoted by .
The disturbances w and v are assumed to be fi-
nite energy signals on the interval [to, 1), i.e.,

w € Ly([to,ts], R™) and v € Lo([to, 1], R?). For
z € R™,Q € R™™", we write [z[} = 2/Qz.

Problem 2.1 Finite Time Horizon Robust H,
Qutput Feedback Control :

Given v > 0 and finite time interval [to, /],
find a control u € Oy, ; such that £¥ has finite

Ly gain strictly less than v, which means that
for each initial condition zo € R™, there ezists

B, (zo) 2 0 finite, with Bt,(0) = 0, such that

F12(a)Pds < (72 = €) fi (lw(s)]? + [o(s)]?)
ds + ﬂl“,(ﬂ?o),

for all (w,v) € La([to, ts], R"*?), for some ¢ > 0.

3. Dynamic Game Formulation

The solution to the robust H, output feed-
back control problem can be expressed in terms

of the solution to a related zero-sum dynamic
game problem. We define the function space
£ = {p: R™ - R*}, where R* denotes the ex-
tended real line. Consider the cost functional

oty (u) = supy,,sup,,{p(z0) + & i (Iz(s)1}

Flu(s)E - 72 (w()? + [o(s)))ds),

2)

where p € £. The robust control problem can be
expressed in terms of J; ; (u).

Lemma 3.2 The system T has finite gain less
than v > 0 on [to,ts] if and only if there ezists
some finite quantity f(z) > 0, with 8(0) = 0,
such that J_.p., (u) <0.

We are interested in the set of functions p €
€ for which the finite time cost J, (u) is fi-

nite. Define the “sup pairing” (-,-) by (p,q) £
supzern{p(z) + ¢(z)}.

Lemma 3.3 (c.f. [7]) Suppose T* is finite gain
on [to,ts]. Then

(P, 0) S Jp,t/(u) S (p: ﬂ;“/)

Thus, if we define
dom X}, = {p€ £:(p,0), (p, B;,) finite},

then Jp; (u) is finite on dom T¥ . We see that

a solution to Problem 2.1 can be obtained by
minimizing Jp¢,(u) over Ops, on domX¥ .

4. Information State Controller

The information state can be thought of as a de-
terministic sufficient statistic in that it contains
all the information needed to control the system
with respect to the given performance measure.
The information state p; is given by (see [6], [7],

[9])
p(z) = sup, supg, {p(z0) + § fi, (|a(s)[3+
lu(s)IE — Y*(|w(s)+
|Cz(s) — y(s){2))ds : z(t) = z},

in which past observations and controls {u(s), y(s):
8 € [to,t]} are known. Dynamic programming
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methods imply that p, satisfies the Hamilton-
Jacobi equation

% = —sup,{V.p- (Auz + Bu + w)
+3((lwl* + |Cz ~ y]?)
—(lzl3 + [ulk)}, po = p.

We have the following representation result.

Theorem 4.4 For all u € O, we have
Jptg(u) = sup  {(py,,0): ps, = p}. (4)
m veLa([to,tsLR?) ’

This key representation result (4) allows us to
view the original output feedback problem as an
equivalent full state one, in which the informa-
tion state serves as the appropriate state.

In general the information state is infinite di-
mensional, i.e., p; cannot be identified by finite
dimensional quantities. However, as we shall

see, bilinear systems belong to the class of sys- -

tems with finite dimensional information state
described in [9]. ‘

2 "
Theorem 4.5 Assume py(z) = ¢—Flz-23_,,

forsome d e R,0<Y' =Y ¢ R™n % ¢ R™.
Then we have

p(@) = 80 - D)~ s0l sy (5)

where £(t), Y (t) = Y'(t) > 0 and §(t) satisfy the
ODE’s

5() = (Au(t) + 772 ()Q)(t) + Bu(t)
+Y (¢)C"9(t),

Y(t) = Y()Au(t) + Au(t)Y (t)-
Y()(C'C-y72Q)Y (t) +1,

#6) = FU2I3 + lu(®)k - v216()]?),

(6)
with £(0) = £,Y(0) = Y, ¢(0) = ¢, #(t) = y(t) —
Ci(t).

Theorem 4.5 implies that in the case at hand
the information state can be identified with the
finite dimensional quantity p = (Y,4). We
denote the quadratic information state by p,, i.e.,

2 -~ .
Po=¢—Flz— &[2_,. Since (p;,0) = ¢(t), the
representation (4) becomes

Toots(8) = supy{} i (12(s)I3 + lu(s)/%~

Y2 (ly(s) ~ C#(s)[?))ds : p(0) = p}.

(7)
Thus, the output feedback robust H, control
problem is equivalent to a new state feedback
game with the finite dimensiop state p obey-
ing the state equation (t) = fo(t), u(t), y(t)),

p(0) = p, in which f(p,u, y) is given in (6). The
value function for the problem is

W(p, t)= iﬁf ']Ppy‘](u)’

which satisfies the Hamilton-Jacobi-Isaacs (HJ1)
equation (see also [9])

Qg‘f—'(p? t)+ sup, inf,{V,W - f(P, 4, y)} =0,

W(p,if ) =¢.
(8)
where y plays the role of a competing distur-
bance. Since Isaacs condition is satisfied in (8),
the order in which the inf and sup are applied
is inconsequential. Note that from (7) one can
write W(Z, P, ) = W*(3, P) + ¢.

An interesting and novel feature of this solution
is that the vaﬁxe function need not be finite for
all values of p,¢. In the linear case, this is closely
related to the coupling condition [9]. Let us de-
note D as the set of points for which W(p,t) is
finite

D = {(3,P,¢,t) : W(4,P,4,1) is finite },
(9)
where S™ is the space of real symmetric positive
definite matrices. In general, D is a nontrivial

subset of R™ X 8™ X R X [to, t7]; see the numerical
examples in §6.

The dynamic programming equation (8) pro-
vides a means to solve the new game problem
as stated in the following theorem ([4], [9]).

Theorem 4.8 (Verification) Assume there ez-
ists a smooth solution W € C(D) of the Hamilton-
Jacobi-Isaacs equation (8). Then the control
u*(p,t) which attains the infimum in (8) defines
an optimal controller u* ¢ Oto,t, which mini-

mizes the cost functional ( 7). In particular, we
have

u(p,t) = ~R™}(k(p,t) + B'V:W)
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where k is an m X 1 vector with
ki(p,t) & VaW(p,1)- Ai + VyW(p,1)-
(YAi) + VyW(p,t)- (AY),

t=1,...,m, and the optimal control at time t is
u = u(p(2), ).

Remark 4.7 In general, the value function need
not be C?, and equation (8) must be interpreted
in the viscosity sense [4], [9]. This is typically
the case in optimal control and game theory.

5. Relation with Certainty Equivalence

In this section we relate the information state
feedback controller obtained in §4 with the cer-
tainty equivalence controller of Basar and Bern-
hard [2], [3].

Consider the value function, V(z,t), of a full
state feedback zero-sum dynamic game problem

which satisfies the dynamic programming equa-
tion

% = —infy sup,{V:V - (Auz + Bu + w)
+3(zle + lulr - 1*lw)}, Vi, =0,
(10)
and suppose that i(z,t) is the value of u achiev-
ing the minimum in (10). The minimum stress
estimate of the state is defined by [2], [3]

Z(p,t) = argmax{p,(z) + Vi(z)}.  (11)

Note that in general, Z is set valued. The CE
controller is defined by

uce(p t) = W(E(p,1),1).  (12)

Theorem 5.8 If (i) the minimum stress esti-
mate Z(p,t) is unique for all (p,t) € D, and (ii)
the full state information value function V; satis-
Jying (10) is continuously differentiable, then the
function Weg(p,t) = (p,, Vi) is a solution to
the dynamic programming equation (8), and the
optimal controller is given by

u(p,t) = —-R_l(k(p,t) + BI72(5 = j)'Y-l),

where ki(p,t) = v} (2 - 2)Y 1Az, i=1,. -m,
which is precisely the CE controller of [3).

The conditions given in Theorem 5.8 are es-
sentially those of [3], and are difficult to verify
in gﬁ_nera.l. The key difficulty is the uniqueness
of the minimum stress estimate. When the CE
principle is valid the resulting controller agrees
with the information state feedback controller
presented in §4.

6. Examples

In this section we present two numerical exam-
ples to illustrate the optimal information state
solution described in §4. We employ finite dif-
ference scheme similar to those presented in [8]
to solve the HJI equation (8). In both examples
we illustrate the domain of W, and in the second
one we show the stabilizing and noise attenuation
properties of the controller.

Example 1

Consider a linear system with the state space
model (1) = —0.5z(t) + u(t) + w(t), y(t) =
2(2) + (1), [2(0 = 4la(®)]® + [u(t)]%. Using
the standard linear H,, control theory we know
that the system has f; gain less than v for all
7 > 1.789 on [0,00). In this case, the station-
ary value function W(%,Y, ¢), which can be com-
puted explicitly, is given by [9]

W@, Y,8) = 58X (I~ 7Y X) e + ¢,

where X is the minimum solution of the algebraic
Riccati equation

0= ApX + XAo—- X(BR'B' - 47)X + Q,

and the domain of W can be expressed as
D={(3,Y,4) : XY <, if 2 # 0}.

For the linear system, X = 1.77. Note that the
only restriction is on Y. As indicated in §4 we
can write W(Z,Y,¢,t) = W*(£,Y,t) +¢. Plot
of the stationary value, W*(%,Y), for £ € [~0.6,
0.6], Y € (0,2], with v = 1.85, is shown in Figure
1 (top). As seen in the figure, W*(%,Y) blows
up at Y = 1.55. We shall use the value of Y, at
% = 0, for which W*(0,Y) starts to blow up as a
measure of the size of the domain D. We denote
this measure by d. Plot of d versus the number of
iterations, denoted by k, fory = 1.85and vy = 1.7
is depicted in Figure 1 (bottom). As seen, the
size of the domain decreases to 0 for v = 1.7
and converges to &~ 1.55 (prediction using the
linear theory yields d = 7%2/X = 1.93) for vy =
1.85. Therefore, we conclude that the minimum

value of v, denoted by «*, for which the robust
He, output feedback control problem admits a

solution lies in (1.7, 1.85]. This result agrees
with the prediction using the linear theory.

Example 2

Consider now an open loop (u = 0) unstable bi-
linear system with the state space model #(t) =

(0.5+u())z(t) + u(t) + w(t), y(t) = z(t)+v(t),
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|2(8)]* = 4|z()| + |u(t)|*. We computed w=(.,)
on [-0.4, 0.4] x (0, 5.0]. Plot of the stationary
value of W*(.,-) for v = 6.0 is illustrated in Fig-
ure 2 (top). As shown in Figure 2 (middle), for
v = 5.65, the size of the domain of W* decreases
to zero, while for v = 6.0 the size of the domain
converges to = 1.99. Thus, we conclude that the
minimum 7" lies in (5.65, 6]. The stabilizing and
noise attenuation properties of the resulting con-
troller for v = 6.0 is shown in Figure 2 (bottom).

Remark 6.9 Truncation of control and distur-
bance spaces in the numerical computation re-
sults in the finiteness of W*(%,Y,t) on the re-
ion outside its domain and inaccuracy in the
etermination of the size of the domain. Further
numerical analysis is still required to study the
effect of this truncation.
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Figure 1: Example 1 (linear system) : station-
ary value function for ¥ = 1.85 (top); domain of
value function for vy = 1.85, and v = L.7 (bot-

tom).
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Figure 2: Example 2 (bilinear system) : station-
ary value function for v = 6.0 (top); domain of
value function for v = 6.0, and Y = 5.65 (mid-
dle); state and noise trajectories for 7 = 6.0 (bot-

tom).
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