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ABSTRACT

Broadcast satellite networks are going to play an
important role in the global information infrastructure.
Satellites can provide direct-to-user Internet services (i.e.
DirecPC from Hughes Network System and several other
systems) and they can also serve as traffic trunks in the
middle of the network. About 98 percent of the Internet
traffic is TCP traffic. TCP works well in the terrestrial
fiber networks. However TCP does not work well in
satellite and in hybrid (satellite-terrestrial) networks. In
this paper we analyze the problems that cause this
dramatically degraded performance and review the
solutions proposed to date in the literature. Based on the
observation that it is difficult for an end-to-end solution to
solve these problems in this kind of hybrid network, we
propose a connection splitting based solution. While a lot
of research has been done on improving TCP throughput
Jor a single connection, we consider the case that multiple
connections with different round trip time compete with
each other. The crucial part of our scheme is the flow
control algorithm at the hybrid gateways (i.e. the
interfaces between the satellite network and the terrestrial
network). Because the end-to-end connection is split into
two at the hybrid gateways, the data packets are buffered
at the TCP layer rather than at the IP layer as in a normal
router. Furthermore the TCP layer not only buffers data
waiting for transmission, but also buffers data transmitted
but not yet acknowledged. The flow control algorithm
should avoid stall caused by buffer exhaustion, guarantee
Jairness among all competing connections and maintain
high utilization of the satellite link. We demonstrate via
performance evaluation that the scheme we propose meets
these requirements.

Introduction

For the home users or small enterprise, using dial-up
modem to access the Internet is too slow. In order to
provide broadband Internet service for these customers,
satellite hybrid network was proposed to solve this last-
mile problem (Figure 1). This kind of hybrid network
exploits three observations [1]: 1) some rural area may not
be reached by fiber network or it may be too expensive to
do so 2) satellite hybrid network can provide higher
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bandwidth to a large geographical area and it is easy to
deploy 3) home users usually consume much more data
than they generate. So this asymmetric hybrid network fits
in the need very well.
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Figure 1: Direct to User satellite hybrid network

Satellites can also be in the middle of the data networks to
provide communication between two gateways located
geographically far away from each other [2] (Figure 2).
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Figure 2: satellite in the middle network

GEO satellite is about 36,000km above the earth. The
propagation delay between the ground terminals and the
satellites is about 125ms. Therefore a typical round trip
time (RTT) for two-way system is about 580ms including
about 80ms RTT for the terrestrial networks. The time
TCP spends in slow start equals RTT*log,SSTHRESH'
when every segment is acknowledged and equals
RTT*log, sSSSTHRESH (3] when every other segment is
acknowledged. For a connection with large RTT, it spends
a long time in slow start before reaching the SSTHRESH.
For short transfers, they could be finished in slow start,
which obviously does not use the bandwidth efficiently.
Some researchers propose to use a larger initial widow [4]
(i.e. 4 MSS) rather than one for slow start. So files less
than 4K bytes can finish its transfer in one RTT rather than
2 or 3. Another proposal [5] is to cancel the delay
acknowledgement mechanism in the slow start so every

! SSTHRESH - slow start threshold



packet get acknowledged and the sender can increase its
congestion window (CWND) more quickly. For bulk
transfer, TCP throughput is inverse proportional to RTT
[6]. So TCP connection with larger RTT does not get its
fair share of the bandwidth when it competes with the
connections with smaller RTT. Using simulations,
Henderson claims the ‘Constant-rate’ additive increase
policy can correct the bias against connection with long
RTT [7]. However it is difficult to implement this policy in
a heterogeneous network.

The bandwidth delay product in this system is very large.
In order to keep the pipe full, the window should be at
least the bandwidth delay product [5]. However the
receiver advertised window that is 16 bits in the TCP
header cannot be more than 64k, which limits the two-way
system throughput to 64k/580ms=903Kbps. Window
scaling [8] is used to solve this problem. However when
the window is large, it is quite possible for multiple losses
in one window, which leads to poor performance. For the
same reason, the sender buffer can also limit the TCP
connection throughput if it is less than the bandwidth delay
product, which is usually the case.

Ka band satellite channel is noisier than fiber channel. Bit
error rates of the order of 10 are often observed [9].
Because TCP Reno treats all losses as congestion in the
network, this kind of link layer corruption can cause TCP
to drop its window to a small size and leads to poor
performance. Forward error correction (FEC) coding is
usually used in satellite communication to reduce the bit
error rate (BER). FEC can reduce the BER to 107 for
about 99.5% of the time for the terminals and 99.75% of
the time for the gateways. However, FEC consumes some
bandwidth by sending redundant information together with
the data and transforms the original random error nature to
one with bursty errors. TCP SACK [10] is proposed to
convey non-contiguous segments received by the receiver
in the ACKs so that the sender can recover error much
faster than TCP Reno, which well known can recover only
one loss per RTT.

There are several solutions proposed in the literature to
solve these problems. TCP peach [11] has two new
algorithms sudden start and rapid recovery, which replace
the slow start and fast recovery algorithm in TCP Reno
respectively. Essentially TCP Peach has two channels, one
is for the data transmission and another one is for
bandwidth probing. TCP peach uses low priority dummy
segments to probe the bandwidth. The problem with TCP
peach is that dummy segments do not carry any
information and they are overhead to the data. Another
problem is that all the routers need to implement priority
mechanism, which makes it difficult to deploy.
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Space communication protocol  standards-transport
protocol (SCPS-TP) [12] is a set of TCP extensions for
space communications. This protocol adopts the
Timestamps and window scaling options in RFC1323 [8].
It also uses TCP Vegas low-loss congestion avoidance
mechanism. SCPS-TP receiver doesn’t acknowledge every
data packet. Acknowledgements are sent periodically
based on the RTT. The traffic demand for the reverse
channel is much lighter than in the traditional TCP.
However it is difficult to determine the optimal
acknowledgement rate and the receiver may not respond
properly to congestion in the reverse channel. Because
there is no regular acknowledgement-driven clock, it uses
an open-loop rate control mechanism to meter out data
smoothly. SCPS-TP uses selective negative acknowledge-
ment (SNACK) for error recovery. SNACK is a negative
acknowledgement and it can specify a large number of
holes in a bit-efficient manner.

Because satellite channel is a FIFO channel, there is no
out-of-order routing. And congestion on the satellite link is
impossible if the packets are sent at the rate of the satellite
bandwidth. Reference [13], a connection splitting based
solution, proposes to use one duplicate ACK to trigger the
retransmission at the hybrid gateway (HGW) and to use a
fixed window size for the satellite TCP connection. The
paper proposes a new sender algorithm using the same
idea as in TCP new Reno [14,15]. It uses partial ACKs to
calculate the bursty loss gap and sends all the potential loss
packets beginning from the partial acknowledgement
number. Although it is possible that the sender could
retransmit packets that have already been -correctly
received by the receiver, it was shown that this algorithm
performs better than TCP SACK in recovering bursty
errors.

Flow control scheme at hybrid gateways

All these above proposals are not independent of each
other. A better solution can combine some of them and
come up with a new protocol for satellite network. All in
all, the new protocol should decouple the congestion
control from error control and fill the long-fat pipe with
enough data packets to improve throughput. For an end-to-
end scheme such as window scaling, the large window of
packets need to be kept in the sender buffer, which means
that the server need to allocate larger buffer for satellite
connections. It is difficult to upgrade all the Internet
servers to be satellite friendly in a short time period.
Satellite connections cannot get their fair share of
bandwidth when they compete with connections of smaller
RTT. It is also difficult for end-to-end solutions to solve
the fairess problem. An alternative to end-to-end scheme
is to keep the large window of packets in the network such



as the hybrid gateway between the satellite and terrestrial
networks. Considering the interoperability issue, we
propose a proxy-based scheme and design a flow control
algorithm for the proxy to couple multiple terrestrial
connections and satellite connections together while
guarantees fairness among connections and maintains high
utilization of the satellite link. We assume the satellite link
is the bottleneck of the system and the terrestrial network
has enough bandwidth. We also assume a strong FEC is
used for the satellite link so the error is handled at the link
layer. We use the direct-to-user topology for our
simulations and focus on the flow control scheme at the
hybrid gateway. It is straightforward to extend the scheme
to the traffic trunk topology.

An end-to-end TCP connection is split into two
connections at the hybrid gateway. One connection is from
the TCP server to the hybrid gateway and another one is
from the hybrid gateway to the TCP receiver. Observe that
the users consume more data than they generate. We
consider only the data transfer from the Internet servers to
the very small aperture terminal (VSAT) clients. Hybrid
gateway sends premature acknowledgements to the
Internet servers and takes responsibility to relay all the
acknowledged packets to the TCP receivers reliably. In our
analysis and simulations, we consider FTP traffic only.

A. Queuing model at the hybrid gateway

Because TCP connection splitting is used at the hybrid
gateway, the data is buffered at the TCP layer rather than
the TP layer. For a normal router, only those packets
waiting for transmitting are buffered at the IP layer.
However, the hybrid gateway has to buffer the packets
waiting for transmission as well as packets that have been
transmitted but not acknowledged. A normal router keeps
all the packets in a FIFO queue while the hybrid gateway
has a queue for each TCP connection.

All the TCP packets received from the servers are
forwarded to the TCP layer receive buffer of the
SERVER-HGW connection and data moved from the
receive buffer to the send buffer of the HGW-CLIENT
connection. Then the packets are sent from the send buffer
to the IP layer. From Figure 3, we can see that the IP input
queue should be empty if we assume the processing rate of
the hybrid gateway is not the bottleneck. The receive
buffer and send buffer can be implemented by one
physical buffer and data copy can be avoided by passing
pointer. The queuing model at the hybrid gateway can be
simplified as in Figure 3, in which the receive buffer and
the send buffer are represented by one buffer.
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Figure 3 Simplified queuing model at hybrid gateway
B. Single connection case

The buffer size assigned to each connection at the
hybrid gateway has a direct impact on the end-to-end
TCP throughput. First we assume there is only one
connection in this system, we consider multiple
connections case in the next section. The buffer size
assigned to the connection is Buff and the effective
satellite bandwidth® is SatBW, which is known and is
a constant. The data in the satellite pipe is SatWin® and
the advertised receiver window for the server is RecvWin.
The round trip time for the satellite connection is SatRTT

and the round trip time for the terrestrial connection is
TerrRTT. When the system reaches the steady state, the
input rate of the queue at the HGW should be equal to the
output rate of the queue, i.e. RecvWin/TerrRTT
SatWin/SatRTT (1).

Casel: Buff < SatBW*(SatRTT+TerrRTT)
Buff = RecvWin + SatWin )

From (1) and (2), we can get SatWin = Buff*SatRTT/
(TerrRTT + SatRTT) and the throughput of the satellite
TCP connection is SatWin/SatRTT
Buff/(TerrRTT+SatRTT) which is smaller than SatBW.
This means that the buffer size becomes the bottleneck of
the system and the SatBW cannot be fully utilized if Buff
is smaller than SatBW*(SatRTT+TerrRTT).

Case 2: Buff = SatBW*(SatRTT+TerrRTT) 3)

From (1) (2) and (3), we can get SatWin
SatBW*SatRTT and the throughput of the TCP connection
is SatWin/SatRTT i.e. SatBW. This means that the TCP
connection can achieve the satellite effective bandwidth.

2 Effective satellite bandwidth is the raw satellite bandwidth
deducted by the bandwidth consumed by the protocol headers.

> SatWin is neither congestion window nor the receiver
advertised window. It is the number of packets in flight on the
satellite link.



This corresponds to the state that all the packets are
flowing in the links and no backlog packets are in the
HGW queue.

Case 3: Buff > SatBW*(SatRTT+TerrRTT) (4)
SatWin/SatRTT cannot be larger than SatBW, i.e. SatWin
<= SatBW*SatRTT. For the same reason, TerrWin <=
SatBw*TerrRTT. Therefore the throughput of the TCP
connection is SatBW and there are Buff
SatBW*(SatRTT+TerrRTT) backlog packets buffered at
the hybrid gateway. These backlog packets cannot
contribute to the throughput and they only increase the
queuing delay.

From the above analysis, the throughput of the connection
is MIN(SatBW, Buff/(SatRTT+TerrRTT)) and the backlog
packets are MAX(0, Buff - SatBW*(SatRTT+TerrRTT)).

C. Multiple connections case

For the multiple connections, the round trip time of the
HGW-CLIENT connections is almost the same, however
the round trip time of the SERVER-HGW connections
could have a lot of difference because the servers are
connected with hybrid gateway through wide area
networks.

1. Static buffer allocation

The simplest scheme of buffer allocation is to allocate all
the connections the same buffer. Suppose there are 2N
connections in this system, ie. N SERVER-HGW
connections and N HGW-CLIENT connections.

Notations:

FairShare -- the fair share of the satellite bandwidth, which
is SatBW/N

Buff -~ buffer allocated to a single connection
MaxRTT -- MAX (SatRTT;+ TerrRTT;), 1 £i<N
MinRTT -- MIN (SatRTT;+ TerrRTT;), 1<i<N

Case 1: Buff < FairShare*MinRTT

This buffer allocation corresponds to case 1 in last section.
No connections can achieve its fair share. Therefore the
utilization of the satellite link is low. We call this system
buffer bottlenecked rather than bandwidth bottlenecked.

Case 2: FairShare*MinRTT < Buff < FairShare*MaxRTT
This allocation ends up with some connections cannot
achieve their fair share because they are buffer
bottlenecked while others can achieve more than its fair
share. This scheme leads to unfairness among competing
connections. The connections with smaller SERVER-
HGW RTT can grab more bandwidth.
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Case 3: Buff > FairShare*MaxRTT

All connections can achieve its fair share and all of them
have some backlog packets at the hybrid gateway. Note
that the FairShare is not fixed and is inverse proportional
to N. The trivial scheme may be to set Buff to
(SatBw/MIN(N))* MaxRTT, where MIN(N) is the
minimum number of connections the system will
encounter and the MaxRTT is the maximum end-to-end
RTT of all possible connections. This scheme is too
conservative and causes a lot of backlog packets buffered
at the HGW. Furthermore the buffer needed at the HGW
increases linearly with the number of connections. This
makes this scheme not scalable when the number of active
connections is much larger than MIN(N). If the total
memory available at the HGW has a limit, which is usually
the case, it is possible that newly arrived connection is
rejected or queued because there is not enough buffer at
the HGW.

2. Adaptive buffer allocation

The static buffer allocation could cause problems such as
underutilization of the satellite link, unfairness and un-
scalability. Observe that the buffer needed for a connection
i to achieve its fair share is (SatBW/N)*(SatRTT; +
TerrRFT;) which decreases when N increases. This
motivates us to allocate buffer to the connections
dynamically based on the number of connections in the
system and the round trip time of the connections [16].
When the HGW receive a SYN packet, it increases N.
However it does not decrease the buffer size of active
connections immediately, rather it decreases the buffer size
only when packets are acknowledged by the clients. If the
buffer size is decreased by the size of all the packets
acknowledged, this could stall the server. In order not to
cause oscillation, our scheme decreases the buffer size by
only half of the acknowledged data. This can reduce the
input rate of the SERVER-HGW connections more
gradually. When the number of connections in the system
decreases, the fair share bandwidth SatBW/N increases.
Therefore the buffer allocated to active connections should
increase. When the HGW receive a FIN packet, it
decreases the global variable N and increases buffer
allocations to the active connections immediately. To bring
a connection to reach its equilibrium point more quickly,
HGW sends an acknowledgment to the server as soon as it
receives an acknowledgement from the client. These
acknowledgements serve as receiver window update to the
servers and they can notify the servers about the buffer
availability more promptly than the data driven
acknowledgements of the SERVER-HGW connections.



Considering the effective satellite bandwidth and the
number of active connections are known, there is no need
to use slow start to probe the bandwidth on the HGW-
CLIENT side. We cancelled all the congestion control
algorithms of the TCP connections on the HGW-CLIENT
side and connection i can start at a window (SatBW/N)*
SatRTT;. We will show in the next section that our scheme
can guarantee fair bandwidth sharing without a fair
queuing scheduler.

An easy extension to this is to provide weighted
proportional fairness to different connections. Connection i
with weight w; can start at window SatBW*

(wi/Zw,. )*SatRTT; and the buffer allocated to it should
be SatBW* (wy/) w, )*(SatRTT; + TerrRTTj). This

provides an easy way to provide different services to
different users, e.g. users who pay more can get more
bandwidth.

In stable state the above schemes can guarantee high
utilization, fairness and scalability. However in the
transient state, it could lead to low link utilization. When
the number of connections in the system decreases, there is
a period for the left connections to speed up. During this
period, the satellite link is under utilized. In our scheme,
the buffer allocated to connection i is (SatBW/N)*(
SatRTT; + TerrRTT;) plus some BACKLOG packets.
These packets are kept at the HGW to maintain high
utilization. On the other hand, when the number of
connections increases, the newly started connections need
some time to ramp up to their fair share. The old
connection i now has a smaller window
(SatBW/N)*(SatRTT; + TerrRTT;) because of the larger N.
In order to keep the satellite link busy, additional packets
besides its window can be sent if the number of packets in
the IP output queue is less than some threshold. After the
newly started connections reach their fair share, the old
connections begin to reduce their buffer size.

D. Simulation results
1. Single connection case

The topology is based on Figure 1 and only one connection
is set up. The SatRTT is 500ms and the TerrRTT is 80ms.
The maximum segment size of TCP is 512 bytes and the
file size transfer from the server to the client is 4M bytes.
The raw satellite bandwidth is 400kbps and the terrestrial
bandwidth is 800 kbps. The buffer size set by our scheme
is about 28K bytes. From Figure 4, we can see the
throughput of the satellite link is about 400kbps and from
Figure 5, we can see the packets are sent to the satellite
link as soon as they arrive at the HGW because there is no
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backlog packets at the HGW. When the buffer size is
increased from 28K to 34K, the throughput is the same and
there are about 6K bytes backlogged in the HGW (Figure
5), which only increase the queuing delay. On the other
hand, if we decrease the buffer size from 28K to 24K, the
throughout is less than 350kbps and the system becomes
buffer bottlenecked.
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Figure 4 Satellite link throughput for different buffer sizes
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Figure 5 Backlog for different buffer sizes
2. Multiple connections case

For multiple connections, we set the satellite bandwidth to
6M bps. From Figure 6 we can see when there are ten
connections in the system, each of them gets its fair share
i.e. 600kbps. When the number of connections increases
from 10 to 15, the throughput decreases to 400kbps. At
about 200 sec, ten connections finish their transfer. The
left five connections can ramp up to 1.2Mbps. In our
simulations, we assume the CLIENT terminals have
enough buffers, so the HGW-CLIENT connections are not
receiver window limited. The BACKLOG is set to two
packets. Figure 6 shows that adaptive buffer allocation can
guarantee faimess and maintain high satellite link
utilization.
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The maximum buffer usage in the adaptive allocation
scheme is about 456K bytes when there are 15 connections
in the system. For comparison, each connection in the
static scheme is allocated buffer size of 31K bytes so that
the total buffer usage is the same when the system has 15
connections. From Figure 7, we can see that when there
are ten or five connections in the system, it is buffer
bottlenecked and the utilization of the satellite link is low.
While when there are 15 connections in the system, the
utilization ramps up, however it leads to unfairness.
Connections with smaller RTT achieve higher throughout
at the sacrifice of connections with larger RTT.

Conclusions and future work

Because it is difficult for an end-to-end solution to solve
the problems in the satellite hybrid network, we purposed a
proxy-based solution. A flow control algorithm at hybrid
gateway adaptively allocates buffer to each connection
based on the number of connections in the system and the
round trip time. Through simulations, we show our scheme
can maintain high utilization of the satellite link and
almost perfect fairness among TCP connections.
Furthermore, our scheme is more scalable than static
buffer allocation scheme.

Because connection splitting needs to access the TCP
header, it will not work if IPSEC is used. One possible
way out is layered IPSEC technique. TCP header in packet
is encrypted with one key, and the rest of the packet is
encrypted with a different key. The hybrid gateway only
has the key to decrypt the header.

Usually TCP traffic and multicasting UDP traffic share the
satellite bandwidth, future work will consider the
bandwidth sharing between TCP and UDP traffic.
Therefore the bandwidth allocated to TCP traffic is not
fixed rather dynamically changed with the traffic arrival
pattern of the UDP traffic.
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