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A non-consensus based distributed optimization
algorithm

lon Matei, John S. Baras

Abstract

In this paper we introduce a discrete-time, distributedmoizition algorithm executed by a set of agents
whose interactions are subject to a communication grapé.alfjorithm can be applied to optimization costs that
are expressed as sums of functions, where each functiorségiated to an agent. The algorithm can be applied
to continuously dierentiable cost functions, it is not consensus-based addriged naturally by solving the first
order necessary conditions of a lifted optimization prableith equality constraints. We show that, provided the
agents’ initial values are fliciently closed to a local minimizer and the step-size iiciently small, each agent
converges to the local minimizer at a linear rate. In addjtiwe revisit two popular consensus-based distributed
optimization algorithms and give fiicient conditions so that there use is extended to non-cdiovestions as well.
We take a closer look at their rate of convergence and alsw #nat unlike our algorithm, for a constant step-size,
the consensus-based algorithms do not converge to a loo@himer even though the agents start close enough to
the local minimizer.

|. INTRODUCTION

Recent years’ technological advances in wireless netwakaeled the interest of the research com-
munity in applications where complex tasks are executed lawge networks, by a large set of agents.
Such applications can include autonomomsnanned vehicles, parallel computing, sensor networks fo
monitoring and tracking, and so on. The execution of thegdiaions over large networks makes a
centralized coordination unfeasible. As a consequensearehers have looked for distributed strategies
where, although agent make decisions based on limitednv#ton, the overall result is comparable with
the result obtained had a centralized strategy been used.

Multi-agent distributed optimization problems appearunaily in many distributed applications such
as network resource allocation, collaborative contralinestion and identification, and so on. In these
type of applications a group of agents has as common goal gtimiaation of a cost function under
limited information and resources. The limited informatimay be induced by the fact that an agent can
communicate with only a subset of the total set of agenfgndrby the fact that an agent is aware of
only a part of the cost function or constraint sets.

A patrticular formulation of a distributed optimization [Miem refers to the case where the optimization
cost is expressed as a sum of functions and each functioreirsum corresponds to an agent. In this
formulation the agents interact with each other subject t@rmmunication network, usually modeled as
a directedundirected graph. This formulation is often found in reseuallocation for wireless networks
problems [Z] or in finite horizon optimal control problems with sepamlalost functionsi].

A first distributed algorithm for solving an optimizationginlem of the type described above was
introduced in [1]. The algorithm, referred to as “distributed subgradiertimod”, is used to minimize a
convex function expressed as a sum of convex functions:

N
mXinZ fi(x).
i=1

In this algorithm, in addition to the standard (sub)gratligep, each agent executes a consensus step to
deal with lack of complete information on the cost functiand is given by:

N
Xi k1 = Zaijxj,k—ai,kdi,k, (1)
=1



where the indices (or j) andk refer to agents and discrete time, respectivaly,are the entries of a
stochastic matrix whose structure depends on the comntionicgraph,d i is the (sub)gradient of the
function fj(x), computed ak; x, ande;k is the step-size of the (sub)gradient descent step. Undkabtai
assumptions on the step-size, the cost functions and thiesiof the stochastic matrix, it is shown in
[11] that iteration () indeed converges to a minimizer.

Many subsequent versions of this algorithm appeared initdr@iure. The introduction of communica-
tion noise and errors on subgradients was addresséd]in . 3], while the case where the communication
network is modeled as a random graph was treated]in §]. Analyses of asynchronous versions of the
algorithm can be found inl[J], [15]. A further extension was proposed it [where the authors considered
state-dependent communication topologies.

A modified version of the distributed subgradient method wma®duced in §], [6], where the authors
change the order in which the two operations of the algorinenperformed. More specifically, first the
subgradient descent step is executed, followed by the osuosestep, and takes the form

N

Xi k1 = Z (i Xjk— @jkdik)-
=1

The algorithms discussed above became popular in the sigoeéssing community as well, being used
for solving distributed filtering and parameter identifioat problems §], [14].

In this paper we study a distributed optimization problemikir to the formulation proposed in {],
namely the goal is to minimize a function expressed as a sururaftions, where each function in
the sum is associated to an agent. We do not make any conasstymptions on the functions, but
we assume they are continuouslyfdientiable. We propose a distributed, discrete-time @lgarthat
guarantees convergence to a local minimizer (at a linea),rgrovided that the initial values of the
agents are close enough to the minimizer andfacsently small step-size is used. The most interesting
aspect of this algorithm is thdtis not a heuristic algorithmbut follows naturally from solving difted
optimization problem with equality constraints, that camgrove to be equivalent (in a sense discussed
later) with the original optimization problem. Specifigalthe algorithm comes as a result of applying
a first order method to solve a set of equations representiadittst order necessary conditions of the
lifted optimization problem. In addition, we revisit thergensus-based distributed optimization algorithm
introduced in 1] and [6] and provide sfficient conditions so that their use is extended to non-convex
functions as well. We show that if a constant step-size id uselike our algorithm, these consensus-based
algorithms do not guarantee convergence to a local minimgen in the case where the initial values of
the agents are close enough to the minimizer andf&cmntly small step-size is used, so that the stability
of the algorithms is ensured. Moreover, we take a closer toakeir rate of convergence.

The paper is organized as following: in Sectibrnve describe the setup of the optimization problem and
introduce a distributed optimization algorithm to solveSectionlll presents the idea behind our algorithm,
by connecting the algorithm with solving a lifted optimizat problem equivalent to the original problem.
In SectionlV we state and prove a number of auxiliary results used fordbal lconvergence analysis of
the algorithm; analysis shown in Sectidh SectionVI takes a closer look at the convergence properties
of the algorithm and qualitatively connects the connetstiof the network with the rate of convergence of
the algorithm. In SectioWIl we revisit two popular consensus-based distributed opétian algorithms,
for which we give sfficient conditions for stability that can be used even whencdbs functions are
non-convex. We end the paper with some numerical simulstéomd conclusions.

Notation and definitionsFor a matrixA, an entry {, j) of this matrix is denoted byA];ij. If Ais a
symmetric matrix,A > 0 (A > 0) means thaA is positive (semi-positive) definite. The symloldenotes
the Kronecker product. 1A is a matrix, Null®) and Rangef) refer to the nullspace and range Af
respectively. The vector of all ones is denotedibylhe set of eigenvalues of a matéxe R™" is denoted
by o(A) = {o1La.02A,...,0n A}, Whereoja <oja if i <]. Given a vectorx, a open ball around” of size
€ is denoted byB(Xx*,€) = {X | [[X—X*|| < €} while a closed ball is denoted (X", €) = {X | ||[X— X*|| < €}.



Let S be a set of vectors. By+ S we understand the set of vector produced by additgeach element
of S, that is,x+S 2 {x+y|ye S}. Let||-|| be a vector normx a vector ands a set of vectors. Byix—S||

we denote the distance between the vegtand the se8, that is,||x—S|| £ infyes|x-Vl. Let f : R" - R

be a function. We denote byf(x) and by V?f(x) the gradient and the Hessian bfat x, respectively.
Let {A;}i“il be a set of matrices. By dia§(i = 1,...,N) we understand a block diagonal matrix, where
the i block matrix is given byA;. We say that the seX is anattractor for the dynamicsq.1 = (),

if there existse > 0 so that for anyxg € S, with S¢ = {x | [|X—=X]| < €}, liMk_ o |IXk — X]|| = 0.

[I. PROBLEM DESCRIPTION

In this section we describe the setup of our problem. We ptefast the communication model after
which we introduce the optimization model and the disteloubptimization algorithm.

A. Communication model

A set of N agents interact with each through a communication topologyleled as an undirected
communication graply = (V,&), whereV ={1,2,...,N} is the set of nodes artll={gj |i,j=1,...,N,i #
j} is the set of edges. An edge between two nodesd j] means that agentsand j can exchange
information (or can cooperate). We denote Ny= {j | §j € &} the set of neighbors of agentand byL
the Laplacian of graplg; defined as

—ljj j €N,
[Llij =3 Zjemlij =1, 2)
0 otherwise
whereljj are positive scalars chosen a priori that can be interprasedeights put on the information
transmitted on the linksi(j).
In the next sections we are going to make use of a set of piepast a (weighted) Laplacian of a
graph; properties that are grouped in the following remark.
Remark 2.1:The LaplacianL of a connected graph satisfies the following properties:
(&) The matrixL has only one eigenvalue zero and the corresponding righteihe@igenvectors ard
andn, wheren is a vector with non-zero entries of the same sign;
(b) The nullspaces df andL’ are given by Null() ={y1 | y € R}, and Null(L") = {yn | y € R}, respectively;
(c) LetL =Lal, wherel is then-dimensional identity matrix. Then the nullspaced.cdndL’ are given
by Null(L) ={I®x | xe R"}, and NulllL") = {p®x | xe R"}, respectively;
(d) Letx be a vector inR"N. Then the orthogonal projection &fon Null(L’) is given byx, = Jx, where
J is the orthogonal projection matrix (operator) defined as
32T g,
mn
with n the left eigenvector ol corresponding to the zero eigenvalue.

B. Optimization model
We consider a functiorf : R" — R expressed as a sum bif functions

N
f(X) = Z fi(%).
i=1

We make the following assumptions on the functidi(®) and on the communication model.
Assumption 2.1:(a) Functionsfi(x), i =1,...,N are twice continuously dierentiable;

(b) Agenti has knowledge of only functiofi(x) and scalars;j, for j € Nj;

(c) Agenti can exchange information only with agents belonging to #teo$ its neighborsV;;



(d) The communication grap& is connected.
The common goal of the agents is to minimize the followingirapation problem
(P1) minyern  f(X)
under Assumption&.1 Through the rest of the paper we assume that probRmhas at least one local
minimizer.
C. Distributed algorithms

Let x* be a local minimizer of R1) and letx;x denote agent’s estimateof x*, at time-slotk. We
propose the following distributed algorithm to solve theldem ,), referred henceforth as algorithm

(A1):

Xkl = Xi,k—ani(Xi,k)—OéZ(|ij/1i,k—|jiﬂj,k), 3
JeN
Aigkel = /li,k+aZ|ij(Xi,k—Xj,k), 4)
JeN;

wherea > 0 is the step-size of the algorithm aRd;i(x; k) denotes the gradient of functidi(x) computed
at x k. In addition, the positive scalalg are the entries of the Laplacianof the graphg defined in ).

Remark 2.2:Note that although the graph is assumed undirected, the Laplaciams not necessarily
symmetric since we may havg # |ji. However, ifljj # 0 then we must also have thit+# 0. In other
words, if agent sends information to agent agentj must send information to agentas well. It turns
out that for a Laplacian satisfying these properties, thé&rima’L is symmetric.

In Algorithm (A;) the indexi (or j) designates an agent while denotes the discrete time. It can
be observed that the algorithm is indeed distributed simceupdating its current estimatgy agenti
uses onlylocal information, that is, its own informationx(x, i x and Vfij(x x)) and information from
its neighbors Xjk, 1jk, for j € Nj). Therefore, at each time instant, agersthares with its neighbors the
quantitiesx; x andljjAj x. Equation 8) is comprised of a standard gradient descent step and ongaddl
term used to cope with the lack of complete information. Tkace origin of equation4) will be made
clear in the next sections. Intuitively howevel, can be interpreted as the price paid by agefdr
having its estimate; i far away from the estimates of its neighbors.

Remark 2.3:We made the assumption that the grgpls undirected. This assumption is in fact crucial
for the implementation of the algorithmA{) in a distributed manner. Indeed, consider a directed graph
with three nodes, where the neighborhoods of the nodevare{2}, N> = {3} and N3 = {1}. In this case
the non-weighted Laplacian of the graph is given by

1 -1 0 1 -1 -1
L:( 0O 1 -1landl/=| -1 1 O )
-1 0 1 0O -1 1
and the algorithmA4;) becomes

Xike1 = Xpk—a[Ark—Azk] —aVxfi(x1k),
Xoke1 = Xek—a[dzk—Ark] —aVxfa(xak),
X3kt1 = Xak—a[Azk—A2k]—aVxfa(X3k),
k1 = Ark+a[Xek— Xkl
Adoks1 = Apk+a[Xek— X3kl
B3kl = Azk+a[Xzk— X1k

Note that although agemtcan updatel; x using only information from its neighbors, the estimate loé t
minimizer x; x cannot be updated since it requires information from ageuatside his neighborhood.

In the next sections we start building the infrastructurat tvill allow us to prove local convergence
of Algorithm (Az).



I1l. AN EQUIVALENT OPTIMIZATION PROBLEM WITH EQUALITY CONSTRAINTS

In this section we define a lifted optimization problem, fravhose solution we can in fact extract the
solution of problem P1). As made clear in what follows, AlgorithmA{) comes as a result of applying
a first-order method to solve the first order necessary cdonditof the lifted optimization problem.

Let us define the functiof : R"N — R given by

N
FO) = ) filx),
i=1

wherex’ = (X, X5,..., Xy), with x; € R". In addition we introduce the vector-valued functprR™ — R"N,
where

9(x)" = (91(X)", G2(x)’; ..., an(X)"),
with gi : R"N — R" given by
gi(x) = Z lij (% = X;),
JEN
wherelj; are the entries of the Laplaciandefined in ). The vector-valued functiog(x) can be compactly

expressed as
g(x) = Lx,

whereL = L®]I, with | the n-dimensional identity matrix.
We define the optimization problem

(P2) minggn  F(X), (5)
g(x) =Lx =0. (6)

The following proposition states that by solving,] we solve in fact P1) as well, and vice-versa.
Proposition 3.1:Let Assumptiong2.1 hold. The vectorx® is a local minimizer of Py) if and only if
x*=1®Xx* is a local minimizer of Py).

Proof: Since the Laplaciar. corresponds to a connected graph, according to Re@4arkc), the
nullspace ofL is given by NullL) = {1 ®x | xe R"}. From the equality constraing), we get that any
local minimizerx* of (P2) must be of the fornx* = 1 ® x*, for somex* € R". Therefore, the solution of
(P2) must be searched in the set of vectors with structure giwer b 1 ® x. Applying this constraint,
the cost functiong) becomes

N
FO) = Y i) = f(x).
i=1

which shows that we have recovered the optimization prollem [ |

Remark 3.1:We note from the above proposition the importance of havingramected communication
topology. Indeed, ifG is not connected, then the nullspacelofs much richer thanl®x | xe R"}, and
therefore the solution ofR2) may not necessarily be of the forri = 1 ® X*. However, the fact that we
search a solution ofRy) of this particular structure ifundamentafor showing the equivalence of the
two optimization problems.



V. AUXILIARY RESULTS

In this section we recall and prove a number of results camegrthe optimization problenPg). They
will be used for addressing the local converging propemiealgorithm (Az).

Our first result characterizes the tangent cone at a localmzar of (P,) and it is going to be used
to formulate the first order necessary conditions ) (

Proposition 4.1: Let Assumptior2.1 hold, letx* = 1®Xx* be a local minimizer of ;) and letQ denote
the constraint set, that i€ = {x | Lx = 0}. Then the tangent cone @ at x* is given by

TC(X*,€2) = Null(L).

Proof: All we have to show is that any vector in N(l) belongs to Tqx*,Q) as well, since it is
well known that (the closure of the convex hull of) PC,Q) is included in Nul(L). Let u € Null (L)
and therefore

Lu =0. (7

From equation?), u must be of the formu = 1 ®u, for someu e R".
We need to show that a vectar= 1 ®u, with ue R" belongs to TEx*, Q). More explicitly, using the
definition of the tangent cone, we must find a functonR — R"N, with limi—ot-0 = an 0, so that

X" +tu+o(t) e Q vt > 0.

Choose an arbitrary functioa: R — R" that satisfies Ii@o,t>0$ = 0. Settingo(t) = 1 ®0o(t), we note
thatx* +tu+o(t) = 1 ® (x* + tu+ o(t)) and therefore

g(x* +tu+o(t)) =L (X" +tu+0(t)) =0 YVt > 0.

Consequenthyu € TC(x*, Q) and TC(x*,Q) is a closed and convex subspace. [ |

Let x* = 1®x" denote a local minimizer ofR,). From the theory concerning optimization problems
with equality constraints (see for example Chapter 3, pagef]17], or Chapter 3, page 253 of]), the
first order necessary conditions fd?;) ensure the existence df € R andA* € R™ so that

AZVF(X") +L’2" = 0.

Note that since. is not full rank, the uniqueness df cannot be guaranteed. The following result
characterizes the set of Lagrange multipliers verifying finst order necessary conditions &%}.
Proposition 4.2 (first order necessary conditions {&%)): Let Assumption®.1hold and letx* =1n®
X* be a local minimizer for problemPg). There exists a unique vectdf € Rangell) so that

VF(x*)+L’1=0,

for all Ae{A*+A, | A, e Null(L")}.
Proof: By Lemma % , page 50 of 7] we have thatVF(x*) is orthogonal on the nullspace bfand
thereforeVF(x*) must belong to Randé’). Consequently, there exists a veciioe R™N so that

~VF(x*)=L’A. (8)

Note theR"N can be written as a direct sum between the nullspace’aind the range of , that is
R"N = Null (L") ® Rang€L). Consequently, there exist the orthogonal vecttrs RangdL) and A,
Null (L") so thatd= A"+ 4,. Note that we can replacé, by any vector in Nul(L") and @) will still
hold. The only thing left is to prove the uniquenessio6f We use a contradiction argument. Letoe
another vector in Randk) so that any vector of the form = A+ Null (L’) satisfies 8). Hence we have
that -VF(x*) = L’A*, and —VF(x*) = L’ which gives 0= L’ (/l* /l) On the one hand, this means that

IThe results states that for aiye TC(x*,Q), we haveh’ VixF(x*) > 0, but sinceT C(x*,Q) is a subspace, orthogonality follows.
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A*=2eNull(L"). On the other hand, since Rar(g¢ is closed under addition;” -2 € RangdL ), as well.
Therefore,A* — A must be the zero vector, or equivalenityy= 1 and the result follows. [ |
Remark 4.1:From the above Propositiod.2, given thatx* is a local minimizer of P2), we have
that VF(x*) is orthogonal on the nullspace &f. Equivalently, VF(x*)’h = 0 for any h € Null(L), or
h [Zi'\ilwi(x*)l.: 0 for anyhe R", wherex* = 1®x* andh = 1®h. Consequentlyz,!, Vi(x*) = Vf(x*) =
0, that is, we have recovered (as expected) the first orderssary optimality condition forRy).
In the next section, we are going to make use of the spectoglepties of a particular type of matrix;
properties analyzed in the next result.
Proposition 4.3:Let Assumptions2.1-(d) hold and leta andH be a positive scalar and a positive-
definite matrix, respectively. Then the eigenvalues of tlarix

<[ ) 2

have positive real parts, whete= M &, with n the left eigenvector ot, corresponding to the zero
eigenvalue. In addition, there are a numbemoéigenvalues equal to/& and they correspond to the
eigenspacgx | x= (0, X ®n’)", xe R"}.

Proof: Let g be an eigenvalue dB and let(u’,v’)’ # 0 be the corresponding eigenvector, whare
andv are complex vectors of appropriate dimensions. Denotingl land V the conjugates ofi andyv,
respectively, we have

N N N .1
Re) (|Iull®+IVII?) = Re{u’Hu +0'L'v-¥'Lu +V’EJV} =

Re{0'Hu} + Re{\“/’éJv}. (10)

SinceJ = %@I is semi-positive definite anH is positive definite we have that

Re@) (llull” +IIVI7) > 0, ¥ u #0.
Therefore for allu # 0 we have that R@] > 0. In the casal = 0 we get

o{v)=elv )

from where we obtair.’v=0 and %Jv = Bv. But this means that = p®v for somev € R" which leads
to

1 1
—Jv=—-v=,yv,
[0 [0

where the second equality followed from the fact that thejgmtoon of v on Null(L’) is v itself and
consequently3 = 1/a. Therefore all eigenvalues & have positive real parts,/& is an eigenvalue oB
and its corresponding eigenspaceps X’ = (0, X ®n’), x€ R"}. In addition, there are a number of
eigenvalues equal to/& since every eigenvalue &f appears times in the matriX. due to the Kronecker
product properties. [ |

We are ending this section by recalling a immediate resulthenspectral properties of a continuous
Hessian.

Proposition 4.4: Let F(x) be twice continuously dierentiable and assume that its Hessian is positive
definite atx*, that is, V2F(x*) > 0. Then there exist positive scalatsm andm, with m <m, so that

V2F(X) > 0 V¥x € Be(X*,6), (11)

and
ml < V2F(x) < myl V¥x e Be(x", 6). (12)

Proof: Follows from the continuity oV2F(x). [ |



V. CONVERGENCE ANALYSIS OF ALGORITHM (A1)

In this section we analyze the convergence properties obritlgn (A1). Since the matrix. is not
full rank, we cannot directly apply existing results for wéay (local) minimizers, such as Proposition
4.4.2, page 388,1]. Still, for a local minimizer and Lagrange multiplier pdi*, 4*), with A* € Rangel),
we show that if the initial valueg is close enough ta*, for a small enough step-size and under some
conditions on (the Hessians of) the functioips), i = 1,...,N, the sequencgxg} does indeed converge to
x*. However, although under the same conditions the sequdricdoes converge, it cannot be guaranteed
to converge to the uniqu& € Rangell) but rather to a point in the séi* + Null (L")}.

In trying to find the solution for problemPg) the first thing we can think about is solving the set of
necessary conditions:

VF(x)+L'A 0, (13)
Lx = O (14)
Solving (L3) and (L4) does not guarantees finding local minimizers, but at lelagy tare among the

solutions of the above nonlinear system of equations. Weusana first order method to solvé3) and
(14) (see for instance Section 4.4.1, page 386), [given by:

Xke1 = Xk—a[VFE(Xe)+L ], (15)
A1 = Ax+ alXk. (16)

Expressing the above algorithm for each of thdimensional components of the vectogsand Ak, we
in fact recover algorithmA;), which shows thenon-heuristicand distributednature of the algorithm.
The following theorem addresses the local convergenceeptiep of Algorithm f;).
Theorem 5.1:Let Assumption2.1 hold, let(x*,1*) be a local minimizer and Lagrange multiplier pair
of (P,), with 2* € RangdL). Assume also thaV?F(x*) > 0. Then there exist positive integeds- 0 and
a > 0 so that under iterationlB)-(16)
Jim Xk —x"II =0, (17)

lim [l ["+ Null(L)] | = 0 (18)

for all xg € Be(x*,0) anda € (0,a]. In addition, the rate of convergence is linear.
Proof: From the Assumptior?.1-(a), according to the mean value theorem there exists diymsi
integery € (0,1) so that the gradient d¥(x) at xx can be expressed as

VF(xi) = VF(X*) + V2F(yi) (x — X7,

whereyy = ox* + (1—¢)xk. Subtractings® from the right- and left-hand sides of equatidrb), and using
the above expansion of the gradiéff(xx) we obtain

Xir1 — X* = X = X* = aV2F(yi) (X — X*) — @ VF(X*) — L’ Ay,
or
Xee1 —X* = Xk—X* —aV2F(yR) (X — X*) — @ VF(X*)
— al’Ag—al’A" +al’A".
From the above we get
Xier1 =X = Xk = X" — | VAR (yi) 0 —X") + L' (A= 27) (19)

where the last equality followed from the first order necgssanditions. Proceeding in a similar manner,
we subtract?* from the left- and right-hand sides of) and observing thatx* = 0, we obtain

A1 — A" = Ak — A"+ aL (X — x). (20)



Defining z1 x = Xk —X* and zy i = A — A%, equations 19) and @0) can compactly written as

Zike1 \ [ Zik V2F(K) L7 \[ zuk
( Zok+1 )_( Zok ) Cy( -L 0 )( Zok ) 1)
where V2F(K) is the Hessian oF(x) computed at a point on a line betweghand x.

We note that the set of fixed points of iteratidtl) is given by the sef(0’,v’)" | v.e Null (L")}, where
Null(L") £ {p® A | 1 € R"}. Therefore if convergence is achieved, will converge tox* and Ax will
converge to some point in the s&t+ Null(L").

In the following, we are going the reformulate iteratid?il so that the vectod® becomes the fixed
point. Let us definéyi = (I —J)zzk. SinceJzyk is the projection ofzp on Null(L’), the vectorZyy is
the error betweemn, and its projection on Nu(L’). As a consequence, in terms Biy, iteration @1)

becomes VR L
Z1 k+1 Z1k "\ zak
~ =1 & - - , 22
(i) N ol R ) [§9 &
where we used the fact thdt{J)Zyx = (I —J)Lzx andL’J = 0. Therefore if the vectod is an attractor
for (22), the set{(0’,v’)" | ve Null(L")} is an attractor for the iteratior2{). By Proposition4.3 the
eigenvalues of the matrix ,
o [ VF(X?) L’
0= 0 1)

have positive real parts and in addition there are a numbeeaenvalues equal to/&, which correspond

to the eigenspac®0’,v’)’ | ve Null(L")}. By Proposition4.4 we can find a positive scala so that
V2F(x) > 0 for all x € B¢(x*,6). Using again Propositiod.3, we can infer that the matriB(x) has all

its eigenvalues with positive real parts for alé B¢(x*,60), and consequently there exists a positive scalar
a > 0 so that the eigenvalues of the matrix

O(X) 21 —aB(x), a<(0,a]

are within the unit circle. In addition, the matri®(x) has a number oh eigenvalues equal to zero
corresponding to the eigenspald®’,v’)’ | ve Null(L")}.

Therefore, there exists a matrix induced norm and+0< 1 so that||®@(x)|| <y for all x € B¢(x*,0).
Consequently® is a contraction map and from the contraction map theorem fgeexample Chapter 7
of [4]) z1x andZ, converge to zero and the rate of convergence is linear, far gle Bc(0,0). [ |

Remark 5.1:The above theorem shows that the algorithp) (converges to a local minimizer provided
that the initial valuexg is suficiently close to the local minimizer and the step-sizas suficiently
small. However, the algorithm cannot guarantee convegéndhe unique Lagrange multiplier vector
A* € Rangel). It is not difficult to show that if the sequenddy} converges then lig, o Ak = A* + JAo,
where the last term is the projection 4§ on Null(L").

The following corollary reformulates Theorefl so that it can be applied to problerR directly.
Corollary 5.1: Let Assumption£.1 hold, letx* be a local minima ofR1) and assume that?f;(x*) > 0
foralli=1,...,N. Then there exist positive integets> 0 fori=1,...,N, anda > 0 so that under algorithm

(A1)
lim %=1 =0 Vi (23)

for all x 0 € Be(X*,6;) anda € (0,a], and in addition the rate of convergence is linear.
Proof: SinceV2f;(x*) > 0 we have thaV2F(x*) = diag(V2 fi(x*),i = 1,. N) >0 and the result follows
from Theoremb5.1, where6; can be chosen a% = %9, with 6 being given by Theorerb.1 [ |
The above corollary shows that provided the agents’ init@lesx; o are close enough to a local
minimizer x* and the step-size is suficiently small, agents executing algorithrA;} solves problem
(P1) in a distributed manner.
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For strongly convex functions, we can formulate immediatge following corollary.

Corollary 5.2: Let Assumptiong2.1 hold, let fi(x), i = 1,...,N be strongly convex functions, and let
X* be the unique global minimizer oP{). Then there exits > 0 so that for alle € (0,a], the sequence
{X k} generated by AlgorithmA;) converges linearly to, that is

kIim 1%k — X[ = 0 Vi. (24)

Proof: Since the functiond;(x) are strongly convex, there exist positive scalarsso thatV2f;(x) >
ml, for all x andi. This implies thatv?F(x) > minj{m}I for all x. Consequently the matrix

V2F(k) L’
[T %)

of equation 22) has its eigenvalues with positive real parts forkalln addition the positive real parts are
uniformly bounded away from zero, sin8&F(x) > minj{m}| for all x. The result follows by mimicking
the steps of Theorerd.1, wheref can be chosen arbitrarily large. [ |

VI. COMMENTS ON THE CONVERGENCE RATE OF ALGORITHM (A1)

In the previous section we established that under suitabiditons, Algorithm A;) can solve problem
(P1) in a distributed manner, and the convergence rate of tharitlign is linear. In this section we take
a closer look at the rate of convergence, and in particulameeld like to connect the convergence rate
with the parameters of the problem and in particular withabenectivity of the communication network.

Algorithm (A1) can be regarded as a first order approximation of the fofigvagontinuous-time, linear
dynamics:

X = —VF(t)-L’A, (25)
1 = Lx, (26)

whereVF(t) is the gradient of(x) computed ak(t). In fact the diferential equations25) and @6) are a
continuous-time, distributed algorithm for solving th@plem @1). Similarly, the discrete-time dynamics
(22) is the first order approximation of the continuous-time ayics

Z; _ VZF(t) L’ Z1
(22)_ ( -L 0 z |’ (27)
where we recall that; (t) = x(t) —x* andzy(t) = A(t) - 2*. Therefore, the rate of convergence of Algorithm
(A1) is dictated by the spectral properties of the matrix

M(t) =( H_E) '6' ) (28)

where H(t) £ V2F(t) is a positive definite matrix with eigenvalues lower and eppounded by two
positive numbersm andmy, respectively, along the trajectory gft), as ensured by Propositigh4. In
the previous section we proved the convergence of the Algar{A;) by studying the spectral properties

of the matrix B HiO L’
M(t):( _f_) 13 ) (29)

As shown in the next proposition, with the exception of thgeavalues corresponding to the eigenspace
{x|x" =(,v),veNull(L")}, the eigenvalues oM (t) and M(t) are the same. That is, it is enough to
focus only on the non-zero eigenvaluesh(t). For notational simplicity, in the following propositipn
the time dependence is omitted. B

Proposition 6.1:Let 8 # % be an eigenvalue dfl. Theng is an eigenvalue oM as well andM has
n zero eigenvalues corresponding to the eigensp@e/’)’ | ve Null(L’) =p®v,ve R"}.



11

Proof: Let 8 # % be an eigenvalue d¥l with corresponding eigenvectou’(Vv’)’, that is

Sl

In the proof of Propositiod.3 we showed thgs # % if and only if v ¢ Null(L”). But this means that there
must existv; € Rangell) andv; € Null(L”) so thatv =v1+Vv; andvy # 0. From @0) we get

Hu+L’v=Hu+L'vy =pu. (31)
Recalling the fact thall is the orthogonal projection operator on Nilf), again from 80) we obtain
1
—Lu + —Vvo =Bv1 + V2.
a

Since—Lu € Rangel) andv, € Null(L’) and any vector ifR™N admits unique projections on Ranbg(
and NullL"), the following must be true:

—Lu = Pvy, (32)
1

But sincep # % it follows thatvo = 0. Using 31) and B2), we obtain thap is an eigenvalue oM with
the corresponding eigenvectar (V)"
Proceeding in a similar way as in the proof of Proposit#8 we obtain that

ReB) >0, ¥ u+0.

Foru =0 we get
L’v=0, and 0=y,

which basically says tha =0 is an eigenvalue corresponding to the eigenspace
XX =(,V),veNull(L)}={x | X' =(0, X®7%"), xe R"},

which concludes the proof. [ |
To simplify the analysis of the eigenvalues Mf(t), we apply to it the similarity transformation

av-("P ). (34)

whereJ = (%]1]1')®|, with 1 the N-dimensional vector of all ones andhe n-dimensional identity matrix,
and obtain

H({t) L'L ) (35)

'\7'(0:( o0

It can be checked tha(t) is invertible and therefore can be indeed used as a sityil&einsformation.
ConsequentlyM (t) has the same eigenvalues Mgt) and therefore it dfice to focus on its non-zero
eigenvalues. In addition, it is notfticult to check that the eigenspace corresponding to the mgeovalues
is given by{(0’,v’)" | v.e Null(L)}. N

Let B be a non-zero eigenvalue of mathk(t) and let(u’,v’)’” be the corresponding right eigenvector
(in the following we are going to ignore the time dependereesitnplify the notation). By 5), the
eigenvector must satisfy the following equations:

Hu +L’Lv Bu (36)
-u = pfv. (37)
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SinceH is positive definite and therefore invertible, we can safalitiply (37) from the left byH and
obtain
Hu = —-gBHv,

from where 86) becomes
—BHV +L'Lv = —B%v.

By multiplying the above with the hermitian of we finally get
B0’V —BU'HV + V'L Lv =0,

or
B%—wiB+wo =0, (38)

where

Therefore, any non-zero eigenval@eanust satisfy

w1+ w%—%o

B:

which shows that the eigenvalue can be both real and complex.
From the properties dfi andL’L we get that

m <wi<my and 0< wo < oNL/Ls

and therefore ifrn2 > 4oL all eigenvalues are real.

Let B be a non-zero, real eigenvalue. Noting that> ﬂ/cuf—4wo we have that, as expected, all real
eigenvalues are positive. In the following, our goal is téed@ine lower and upper bounds on the real
eigenvalues oM (t). We approach this task by considering worst-case scenationsidering the previous
upper-bounds, we note that considering fixed, the following inequality holds

Bmin(wo) < B < Bmax(wo)
where
Bmin(wo) = :—ZL (mu — m— 4600) ) (39)
Bmaxwo) = %(mu + /MG - 4wo). (40)

Next, we note thaBmin(wo) is minimized whenwg takes the smallest possible value. Similafyax(«wo)
is maximized whenwg takes the smallest possible value. We pointed out earlardf is lower bounded
by zero. Using the definition aby, it follows thatwg = 0 only if v.e Null (L), but this is impossible since
we assumeg@ to be a non-zero eigenvalues. Therefavg,must be a non-zero, positive scalar.
Sincel’L is a symmetric matrix, there exists a matkixwhose columns are orthogonal eigenvectors
of L’L, so that
L'L = U'AU,

whereA = A®]I, and
0 0 0
0

0 oL .-
A=] . : , : ;

0 0 ON,L’L
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with o/ > 0 for all i > 2. Using the notatioiv = Uv, wg can be equivalently expressed as

N —
S oLVl
B

wo =

b

where then-dimensional vectoy; is thei component of.. A lower-bound onwy is given by

N J—
oot D, Vil
Ivi|2

wo > =0 (1-¢),
wheree = ||v4]|%/|IVI|%. Note thate # 1 since this would mean thAt= 0, contradicting the initial assumption.
In the expression ofug we notice how the connectivity of the graph, expressed imseof the second
smallest eigenvalue df’L, influence the real eigenvalues of the matiit) and consequently the rate
of convergence. We note that the better the connectivithefgraphg, the larger the value Off"z‘ is and
consequently the larger the value @$,,, as shown in the next proposition. Therefore, the better the
connectivity is, the larger the lower bound gfis.

Proposition 6.2: Let A be a matrix so thabA' = A’A. If (1,a) is an eigenvalue, (right) eigenvector pair
of A then(/lz,a) is an eigenvalue, eigenvector pair AfA.

Proof: Let a be the right eigenvector ok corresponding to the eigenvaluethat is,

Aa= la.
We also have that
A'Aa=1A'a=AA3a,

from where we have thad’a is an eigenvector oA, corresponding to the eigenvalde But this means

that A’a anda must be co-linear, and therefore there existso thatya= A’a, or y|lal|? = & A'a = 1||al|°.

Thereforey = 1. ConsequenthAAN a= 1A’a= 1°a= A’Aa. ThereforeA? is an eigenvalue ol’A with a

the corresponding eigenvector. [ |
We saw earlier that itu%—4wo <0, the eigenvalug@ is complex, that is,

wlijﬂ/%o—wi

Br2= > ,
and we can immediately determine that
M Rep) <M. (41)
2~ -2
In addition the absolute value @fis given by|8| = 4wg and therefore
4(1-€)o L < |8l < donLL. (42)

We note from above that in the case of a complex eigenvakuegd part is not dependent on the network.
Hence in the continuous-time version of the algorithm, fjpaf the state vector may convergence faster,
but it will oscillate due to the complex part and the ampléuaf oscillations depends on the network
structure throughuwg. Note however, that in the discrete version of the algorjttime absolute values of
the eigenvalues determine the rate of converge; absolltes/avhich do contain the complex part.

When the discrete-time version of the dynamics of the eséme used, the eigenvalues of interest are
of the form 1-aB and we are interested in values @fso that|1—ap| < 1.

In the case of real eigenvalues, fro@0)( we have that

2 4
O<a<=< (43)

Mu+ /M= 4(1-€)oaL
J
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which shows that a better connectivity allows for a largeenval from whicha can be chosen to ensure
the stability of the algorithm.
In the case of complex eigenvalues we have

11— aB? = [1- aReP)]> + PIm(B)? = 1- 2aRe) + 2|3/

From @1) and @2) it follows that
1-2aRe3) <1-am,

and
B2 < [4onL ]

Consequently
11— aB? < 1—am +a?[donL ),

and a sfficient condition so that the complex eigenvalues are strigithin the unit circle is:

1-am+a?[don ]2 < 1, (44)
from where we have that
m
< ——. (45)
[Nt

Inequalities 43) and @5) give in fact an estimate for the parameterwhose existence is shown in
Theorem5.1, namely

4 m
’ 2
my + \/mﬁ —4(1- o 14N

We end this section with two observations. First, we can festhat an improved connectivity (reflected
by a large value obr,|, and consequently a large value ®$)-.) may potentially increase the rate of
convergence, since may be chosen larger. Note however that there are limitatoonthe benefits of an

improved connectivity. More specifically, a large valueogf may make 4(mu+ \/mﬁ—4(1—e)ag,|_»|_)

a=min

larger thanm/[4aN,|_/|_]2, at which point the latter becomes the value for the estiréte. Therefore,
improving connectivity after some threshold may not helprdte of convergence. The second observation
is that the estimate faw is rather theoretical, since to actually compute this estimwe would need to
know the values ofm, m, and e (so far we only showed there existence). Still, the analgsres an
interesting insight on the tradfie between the connectivity of the communication graph aedrdite of
convergence of the algorithm.

VII. CONSENSUS-BASED DISTRIBUTED OPTIMIZATION ALGORITHMS REVISITED

In this section we revisit two of the most studied consersased distributed algorithms in the literature.
We analyze them using the setup introduced in the previctigoss and give additional conditions so that
they can be applied for fierentiable functions, not necessarily convex. We givaregis on their the
rate of convergence and show that, except in some very falocases, unlike algorithn\{), the studied
consensus-based algorithms do not converge to a local meijrbut rather to a neighborhood around
the minimizer; neighborhood whose diameter depends ontépesize of the algorithm. The analysis of
the two algorithms is made for constant step-size.

The first consensus-based distributed algorithm, namedelfi@emh Algorithm @y), was proposed in
[11] and is given by

Xi kel = Z ajj Xjk —aV fi(Xi k), (46)
JEN;UI
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where A = (a.,) is a stochastic matrix, corresponding to the communicagoeph G, and assumed
symmetric Using our formulation, algorithmA,) can be reformulated as

Xk+1 = AXk — @ VF(X), (47)

whereA 2 Agl.
The second consensus-based distributed optimizatiorritgg referred to henceforth as Algorithm
(A3) and introduced int], [6], is expressed as

Xik+1 = Z aij | Xk — @V (x| (48)
JEN;UI
or equivalently
Xir1 = A [Xk — @ VE(xi)] (49)

where A £ A® 1. Note that compared to AlgorithmAg), in Algorithm (As) matrix A multiplies the
gradientVF(xx) as well, suggesting a change in the order the two operapenf®rmed by the agents
are executed: first the agents update their current essnbgt@advancing in the direction provided by the
gradient, followed by sharing these updates with their meags, and performing a convex combination
with them. Throughout the rest of this sectidin|| refers to the Euclidean norm.

A. Convergence analysis of Algorith{Ay)

In this subsection we give new (@icient) conditions so that AlgorithmAf) can be applied for twice
differentiable, not necessarily convex cost functions. In temdi we show that except in some very
favorable conditions, for constant step-size, Algorithdg)(does not converge to a local minimizer, even
though the agents start with initial values close to the minér and use a small enough step-size so that
the algorithm converges.

Let x* be a local minimizer of ®»). Then the gradient ofF(x) can be expressed as

VF(X) = VF(X*) + V2F(y) (X - X*),

whereV2F(y) is the Hessian oF(x) computed af/, a point betweex andx*. In this case algorithmAy)
becomes
X1 = Axk— | VF(x") + V2F(K)(xk = X") | (50)

or subtractingk® from the left and right hand sides d5@), we obtain
X1 =X = |A = aV2F(K)| [xc—X"] - aVF(X"), (51)
where we used that fact thax* = x*. DefiningM»(k) 2 A —aV2F(K), we further have
Xice1 =X = M2(K) [Xk —X*] — @ VF(X"), (52)

Let o(A)={-1<01a <02A<,...,<0onnA = 1} be the set of eigenvalues éf. The next proposition
characterizes the spectral properties of the marixaV2F(x) as a function ofv.

Proposition 7.1:Let Assumptions2.1 hold, let x* be a local minimizer of P2) and assume that
V2F(x*) > 0. Then there exist positive numbetsm andmy, with m <m, so that

1+
p(A-aVZF(x)) < 1, Vx e Be(x".0), Vae (o, “LA), (53)
and an upper bound on the spectral radiug\efaV2F(x) is given by
l+0‘1A
1-am a € (0, = )|
Y (A - CZVF(X)) = 1-£O'1Am+illg'])_/.\ (54)
ewvam, ee [ )
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Proof: By Proposition4.4, there exist the scalas m andm, so that
V2F(x) > 0, VX € Be(X*,6)

and
ml < V2F(x) < myl, ¥x € Bg(x",6).

SinceA is symmetric, we have that
O'1,A| <A<=xI,

and it follows that
(1A —amy)l <A —aV2F(x) < (1-am)l, Vx € Be(X*,6).

Therefore, the matriA — aV2F(x) has all its eigenvalues strictly inside the unit circle hietfollowing
inequalities hold:
lora—aemy <1, [1-am| <1

O']_,A+1

From the first inequality we obtain that € (O, =

€ (0,2). Noticing that 1+ o1 < 2 we get that
+1
a € (0, JiA )
my

To derive 64) we consider three cases on the positionsrgh —am, and 1-om with respect to zero,
within the unit circle.
Assume first that & o1 4o —am, <1—-am or equivalently @ < == ‘”A . In this case the spectral radius

of A —aV2F(x) is upper bounded by 4am, and therefore we have

) while from the second inequality we get that

O1A
A —aV?F(x)) < 1-am, Vae(O, —) 55
o (x)) - (55)
In the second case we assume thah —amy, <0< 1-am which is true fora € [‘”WA %) Comparing
the modulus of the two bounds we obtain
1_ c O‘;]__A, l+0‘1A
p(A-aVZF(x)) g{ am  ae( '{yglAWlm) (56)
—oiaAtamy «ac€ [m+mu ﬁ)
In the third case we have; s —am, < 1-am <0 form where we obtain that
1 1l+o01a
A —aV2F(X)) < —o1a +amy, Vae[ ) 57
o () < —01a T (57)
The result follows from the combination 05%),(56) and &7). [ |

The next result specifies Sicient conditions so thatx —x* evolving according to52) remains bounded.
Proposition 7.2:Let Assumptions2.1 hold, let x* be a local minimizer of P;).Assume also that

V2F(x*) > 0. Then there exist positive numbetsm andmy, (with m <m), a = HSLTT% and O<6<1
so that ifxg € B¢(x*,0), a € (0,a] and
IV < ém, (58)
then the sequendey} generated by AlgorithmAy) satisfies
s =Xl < 6 (59)

In addition, there exists a matrﬂ(; so that
lim xx—X* = —a¥,VF(X), (60)

k—oo
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where
k-1

¥, 2 lim ) ®o(k.7), (61)
=0

with ®,(k,7) the transition matrix of §1), that is,®2(k,7) = Ma(k—1)M2(k—2)...M (7).

Proof: The existence of the positive numbetsm andm, is ensured by Propositiofh.4. By (58),
we have thaﬂ% <a< MT” Then for anya € (0,a], according to Propositiofi.1, the eigenvalues of
A —aV?F(x) for all x € Bg(x*,6) are strictly within the unit circle. By choosing= max-oia +amy,1-
amy}, again by Propositiof7.1, we have that

p(A=-aVZF(X)) < 6,¥x € Be(X",6), Va € (0,a].

The main idea of the proof consists of showing thiat x* € B¢(0,0) for all time k. If this is the case then
p(Mo(K)) < ¢ for all k since the HessiaR2F(k) from M»(K) is computed at a point on a line betweeh
andxg, and therefore it belongs tBc(x*,6).

We proceed by induction. Assume thixi — x*|| < 8. Then according to iteratiorb{)

(X1 = X7 < 6lIxk = X + @l V(X)) < 66 + el [VE(X)]I. (62)

Depending on the value af, we distinguish two cases. i (O, ﬁ;’:ﬁﬁ) thens = 1—am and 62
becomes
X1 =Xl < (1= @m0+ I VE(XO)| = 6 —a (Mo - [[VE(X)I) < 6,

where the last inequality followed fronb®). In fact one can check that— «(m6o—|VF(x*)|]) > 0 for

a€ (O, ﬂfﬁrﬁ) and therefore the above inequality makes sense.

If howevera e [

l+0‘1yA
m+my’

c?) thend = —o 14 +amy and 62) becomes
X1 =X < (1A +amy)d +al[VE(X)|| =
—o1a0+a(Mmyd+ IVE(X)) < —-o1A0+ a (myd +||VF(X)I)
a+ O'LA)H
myé + [[VE ()|
Therefore, for our choice af we have that|xx —x*|| < 8 for all k>0 and consequently
p(M2(K)) = p(A-aV?F(K) <5 <1, Vk>0.
The solution of 1) is given by

=—01A0+ (mud + IVE(X)I) = 6.

k-1
Xk=X" = ®(k,0)(xo—X") e ) ®2(k, 7)VF(x"),
=0
and since|®,(k, 7)|| < [IM2(k—D)[IM 2(k—2)||....[IM2(7)|| = 87 we obtain that
k-1 k-1

D @2k DVFRC) | < > @2k DIIIVFX) <
=0 =0

k-1 1
2 S TIVFOOI < 7= IVF()IL.
=0 B

from where B9) follows.
To obtain @0) it is enough to show that the serit#s(k) = Zf;étl)z(k,r) converges since we already
have that
kll_r)rgo D5 (k,0)[xo—X"] = 0.
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We achieve this by showing that the serE$;(1J|e|’(I)2(k,r)ej| converges, since this implies that the series
Z';;(l)e{CI)z(k,r)ej converges as well, Whel{«&q}i”:’\'1 represents the standard Euclidean basis.

Using the Cauchy-Schwarz inequality and the fact fledt= 1 we get

k-1 k-1 k-1 15 1
> le@alc el < D Ida(k Tl < Y 6T = S <
=0 =0 =0

S 1-6 " 1-¢

and therefore the series is upper bounded. But since is atsmtonically increasing, then it converges
and therefore there exit¥;, so that
k=1

lim Zo(l)z(k,‘r) = (63)

Consequently, we get that
k-1
lim x=x" = lim —az(;(l)z(k,r)VF(x ) = —a¥5VF(X"),
which concludes the proof.
[

We showed above that the stability of AlgorithiAx§ can be guaranteed if the gradievie(x*) is less
than a threshold; threshold that depends on a set of paremietiiced by the behavior 82F(x) around
the minimizerx*. We need this inequality to hold to make sure that at eaclatiter xx is kept in a
neighborhood aroung* in which V2F(x) is positive definite. Such a condition is not needed in thgeca
of Algorithm (A1). We also showed that algorithm\f) does not guarantee convergence to a minimizer
of (P1) but rather to a neighborhood arourt whose size depends &nfi(x*) anda. The neighborhood
can be made arbitrarily small by makiagvery small, but this would reduce the rate of convergence. In
fact, except in the case of some “fluke of nature”, matheraliyi¢ranslated as

VF(x") € Null (¥3),

convergence to a local minimizer does not happen. In pdaticaonvergence is achieved ViF(x*) = 0,
or equivalently fi(x*) = 0 for all i. However, this is not an interesting case since there is mal rier
cooperation between agents.

B. Convergence analysis of Algorith{Ag)

This section focuses on the convergence properties of Allgor(As). We give conditions to ensure the
stability of Algorithm (A3) in terms of the parameters of the problem. As in the case gbthm Ay,
we show that in general, for constant step-size, Algorith) does not converge to a local minimizer,
even though the agents’ initial values are close to the mag@mand the algorithm is stable. Still, there
are more possible scenarios under which AlgorithAg) (does converge to a local minimizer, compared
to Algorithm (A).

Let x* be a local minimizer of P2). Then proceeding as in the case of Algorithdp) we can
reformulate Algorithm Az) in terms of the Hessian df(x) and obtain

X1 =X = Al =aVZF(K)| [xk - X" - 2AVF(X"), (64)
or by definingM3(k) £ A [l -aV2F(k)|, we have
Xi+1— X" = M3(K) [Xk — X" | = dAVF(X"). (65)

The next result is the equivalent of Propositidrl and shows that as long is kept close enough
to a local minimizerx*, the matrixA[I —aVZF(X)] is positive definite provided thaf?F(x*) is positive
definite.
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Proposition 7.3:Let Assumptions2.1 hold, let x* be a local minimizer of P2) and assume that
V2F(x*) > 0. Then there exist positive numbersm andm, (with mcm) so that

p(A[l —aVF(X)|) < 1, ¥x € Be(X",0), Yare (o, %) (66)

and an upper bound on the spectral radiuﬁ\@f—aVZF(x)] is given by
1- e(0, =2-),
p(A[l-aVZF(x)|) < om - ac( ) ”'*”g) (67)
-l+am; «ae€ [m+rm’ E)'
Proof: By Proposition4.4, there exist the scalas m andm, so that

V2F(x) > 0 Vx € Be(X*,6)

and
ml < V2F(x) < myl Vx € Be(x*, 6).

Since A is symmetric, we have that(A) = ||A|| = 1 and therefore
p(A[l-aV?F(X)|) <p(1 - aV?F(x)).

We also have that
(1—amy)l <1 —aV?F(X) < (L—am)l VX e Be(x",6).

Therefore, in order for the matrik || —aV2F(x)| to have all its eigenvalues strictly inside the unit circle,
it is suficient for the following inequalities to be satisfied:

[1-amy/ <1, [1-am|<1,

2
ae (O, —)
my
To derive 67) we consider three cases on the positions efain, and 1- am with respect to zero.

Let us first assume that01l—am, < 1—am or equivalently G a < % In this case the spectral radius
of A[I —a/VzF(X)] is upper bounded by 4am, and therefore we have

or equivalently

p(A[l —aV?F()|) < 1-am Va e (o, %) (68)

In the second case we assume thatatn, < 0 < 1—am which is true fora € [%%) Comparing the
modulus of the two bounds we obtain

1— 1 2 )
p(A]l -aV?F()]) < om e (i "”"}) (69)
-1+amy O‘E[mﬂm’ )
In the third case we have-dam, < 1-am < 0 form where we obtain that
1 2
p(A[l—aV?F(x)|) < —1+am, Va e [E’ E)' (70)
The result follows from the combination 06§),(69) and (70). [ |

The following result give conditions under which Algorithifg) converges. It also shows that in general
Xk does not converge t®* except in some particular cases.
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Proposition 7.4:Let Assumptions2.1 hold, let x* be a local minimizer of P2) and assume that

V2F(x*) > 0. Then there exist positive numbetsm andmy, (with m <m), a = W%(x*)n and O<d6<1
so that ifxg € B¢(x*,0), a € (0,a] and
IVE() < 6m, (71)
then the sequendey} generated by AlgorithmAg) satisfies
3k k l 3k
X=Xl < 8"ix0 = X"l + a7 [AVF()|. (72)
In addition, there exists a matri; so that
kIim Xk — X" = —a¥3AVF(X"), (73)
where 1
Wiz lim ) ®s(k.7), (74)
— 00 —o

with ®3(k,7) the transition matrix 0of49), that is,®3(k,7) = M3(k—1)M3(k—-2)...M3(7).

Proof: Let 6, m andm, be the positive numbers defined in Propositdd. By (71), we have that
orm S a < 2. Then for anye € (0,a], according to Propositioi.3, the eigenvalues 04\[I —aVZF(X)]
are strictly within the unit circle for alk € B(x*,6). By choosings = max-1+am,,1-am}, again by
Proposition7.3, we have that

p(A[l—aV?F(x)|) <6 Vx € Be(x",6), Yo € (0.a).

The main idea of the proof is showing that — x* € B¢(0,0) for all time k. If this is the case then
p(M3(K)) < ¢ for all k since the HessiaR?F(k) from M3(k) is computed at a point on a line between
andxk, and therefore it belongs tBc(x*,6).

We proceed by induction. Assume thixi — x*|| < 6. Then according to iteratiorbg)

(X1 = X|I < 61Xk = XTI + 2l VE(XF)|| < 60 + | [VF(XT)]|. (75)

_2_
T oMy

e = X1 < (L—am)8 + @] VF(x")] =
— 9—a (MmO IVF) <6,

2

Depending on the value af, we distinguish two cases. dfe (O ) thens =1-am and 62) becomes

where the last inequality followed fronv{). In fact one can check that— «(mé—|VF(x*)|]) > 0 for
@€ (0, 2 ), and therefore the above inequality makes sense.

m+my
If howevera e [rmirm c?) thens = —1+amy and (75) becomes

X1 = X7 < (=1 +amy)d + | [VFE(XT)|| =
—60+a (M +|IVE(X)I) < =0+ a (mud +[IVF(X)I) =
20
U M VG
Therefore, for our choice af we have that|xx —x*|| < 8 for all k>0 and consequently
p(M3(K) =p(A[l —aV?F([K)|) <6 <1, Vk=0.
The solution of 64) is given by

(LO+IVF(X)II) = 6.

k-1
Xk=X" = ®3(k,0)(xo—X") e ) ®3(k, 7) VF(x"),
=0
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or
k-1

[1Xic = X" || < [|@3(k, O)llIXo — X"I + Z @3k, DIIAVEX)I, (76)
=0

and since|®3(k, 7)|| < [IM3(k—)[IM3(k=2)||...IIM3(7)l| = 657, inequality2) follows. Using the same
approach as in the proof of Propositign2, we can show that the SGI’i@E;g‘)(Dg(k,T) converges and
therefore there exit¥; so that

k-1
Jm;)®3(k,r) =
We conclude the proof by noticing that
Jim ®3(k, 0)(x(0)-x") =0,

and therefore
lim Xk —X* = —aW3AVF(X").

k— oo

[ |
The above result shows that, similarly to AlgorithAg), Algorithm (A3) does not guarantee convergence
to a minimizer of P1), but rather to a neighborhood arourtl whose size depends dnf;(x*) and a.
Convergence tx* is ensured provided that

VF(x") € Null (W3A).

Interestingly, unlike AlgorithmAy) if the communication graph is complete, AlgorithiAgj does converge
to a local minimizerx*. Indeed, if the communication graph is complete tiAea %]l]l' and each entry
of the vectorAVF(x*) is given by

[AVF(X)], ZVf(x ) =0,
where the last equality followed from the first order necessanditions of P1).

C. Comparison of the performance of Algorithi#s) and (Ag)

We provided in the previous two subsections estimates onateeof convergence of the Algorithms
(A2) and (A3). A natural question is if these estimates are tights. Usirgimple example, we show in
the following that in fact the upper-bounds on the rate ofvesgence can be reached.

Let fi(X) = —x2 for all i and consequently2F(x) = 1. For this particular example, the matrices controlling
the convergence of the algorithm®) and Az) areM 2 =A—-al andM 3 =(1-a)A, respectively. According
to the Propositiong.1 and 7.3 the upper-bounds on the spectral radius of the matitgsand M3 are
given by

Loia
O I
and

p(M3) S{ e Ziﬁ) g 7o
respectively.

On the other hand the eigenvalues of the matridesand M3 are given by

oc(Mp)={oc1a—-a,02A—a,...,0N-1A —@,1—0a]}, (79)
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and
oc(M3)={(1-a)ora.(1-a)o2a,....,(1-a)on-1a,1-a}, (80)

and thereforep (M2) = max|o1a —al,|1-al} andp(M3) = max{|(1-a)o1al,|1-al} = |1-al|. Forcing the
spectral radius oM, andM 3 to be smaller than one, we note that indeed the upper-boumisiid (78)
are reached, and therefore the bounds are tight.

An interesting question is which one of the Algorithn#s) and @Agz) performs better. In the following
we show that at least in a worse-case scenario, that is, {herdgounds on the spectral radius of matrices
M2 andM3 are reached, AlgorithmAg) converges faster than Algorithm\f). Let p,(M2) andpy(M3)
denote the upper-bounds on the spectral radius of the aémtdoned matrices, as per Propositioh&
and 7.3. Using the results from the two propositions it can be chdch®t p,(M3) < py(M>) for all

e (0, 1+r‘:hl’A). In particular we have that

puM2) = 1-am=pu(M3)
l+O'1,A)
m+my)’
puM2) = -opa+am>1-am =py(My3)
[ 1+ 01 2 )
m+my” m+my)’
pu(M2) = —o1a+am>-1+amy=py(M3)
[ 2 l+O'1,A)
m+m,’ my )

Y a€el0,

V «ac€ (81)

Y «ae€

1+0'1,A

In addition, fora € ,i) although we have that,(M3) = -1+am, < 1, py(M>2) cannot be guaranteed
to be smaller than one. Therefore we have that, at least inreeagase scenario (that is, the upper-bounds
on the spectral radius are reached) Algorithfa)(converges faster than Algorithni\f). In [16], it is
indeed confirmed that AlgorithmAg) outperforms Algorithm &), at least from the point of view of the
rate of convergenée The authors were able to compute exactly the spectral sasfimatricesM, and
M3, but only because they considered quadratic cost functions

We saw earlier that the two consensus-based algorithmdeircase of a constant step-size, do not
converge exactly to the (local) minimizer. Hence, anotimeresting question is how close do the two
algorithms get to the local minimizer. In the following weaosh that, as in the case of the rate of
convergence, in a worse-case scenario, Algorithg) (s guaranteed to be closer to the (local) minimizer.
Using the results of Proposition?2, in the case of AlgorithmAy), we have

. % % * a *
l('['gosuﬂlxk—x | < alPHlIIVEX)I < 1= IVECE)IL. (82)

pu(M2)
Similarly, from Proposition/.4, in the case of AlgorithmAg) we have

Jim suplixic— Xl < al F3lIIAVF () < IVECI, (83)

@
1-pu(M3)
where||- || denotes the Euclidean norm, and the last inequalitiesvieltbfrom the definitions oﬂ’; and

Y3, ;hown in 61) and (74), respectively. Singe accqrding ®1) we have thapu(M 3) Spq(M 2), Algorithm

(A3) is guaranteed to converge to a point in a neighborhood drtlue minimizer; neighborhood whose
diameter is smaller than the diameter of the neighborhosdltieg from Algorithm @y). In addition, as
expected, the size of the neighborhoods decreasesawitiiich in turn decreases the rate of convergence.

2The authors refer to AlgorithmAg) asconsensus strateggnd to Algorithm @3) asATC djfusion
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VIIl. N UMERICAL EXAMPLE

In this section we test our distributed algorithm on the “\epoint of a set of points” problem, where
a group ofN agents want to find a point in the plane whose sum of weighted distances from a given
set of pointsy, ..., yn IS minimized. Formally expressed, the common goal of thentsgis to minimize

the function N

Qn'{%; fi(x),
where fi(x) = wi[|x—V;ll, for i =1,...,N. In the following numerical simulations we choose- N = 12,
w; =i andy; = ie;, where{g} is the standard Euclidean basis. We assume that the agésscinthrough
a communication network with a circular structure, showrFigure 1. In Figure 2 we plot the errors

Fig. 1: Communication network

between the estimates of the agents and the mininjiggr x*||, as generated by AlgorithmA(), where
we usex = 0.025 and the non-weighted Laplacian corresponding to thehgraFigurel. We increase the
eigenvalues of the Laplacidnby multiplying it with a scalac = 4. To ensure the stability of the algorithm
we are forced to pick smaller values fer Figure3 shows the numerical simulation of Algorithrmy) for

a =0.002 and Laplacianl4 We note that the values of the estimate tend to be closerdio eher. The
intuition behind this phenomenon may be the heavier “wéigtt on the dynamics induced by the equality
constraint of ProblemR>) which forces the values of the estimates to be closer. Alaipphenomenon
can be observed in the case of the consensus-based dedrifigiorithms, when the connectivity of the
graph is improved.

We compare in the following AlgorithmA() with Algorithms (A2) and Ag). We would like to point
out that the comparison is not easy since the algorithms Hdterent parameters. For instance, indeed
we can create a stochastic matrix from Laplaclamsing the formulaA =1 —yL, but we can obtain
an infinity of such stochastic matrices. Therefore we chostoahastic matrixA that corresponds to
the communication graph and that minimizes the second damgjgenvalue in modulus. Figurdsand
5 present a comparison between Algorithndg)( (A2) and (Az), where in the case ofAq) we used
the non-weighted Laplacian. We plot the average of the rb@tween the current estimates and the
minimizer, that is,% Zi’ilnxi,k—x*ll. As expected from the theoretical results, Algorithms)(and Asz)
do not converge to the minimizer. For large valuesrdhe consensus-based algorithm appear to converge
faster. If however we want Algorithm#\¢) and (As) to be more precise, we need to decrease the step-size,
but as a consequence we decrease the rate of convergencd,aswbown in Figure. In addition, as
suggested by our analysis, for the considered example rittigo (Az) does perform betterA;), both in
terms of rate of convergence and precision.
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Fig. 3: Convergence of AlgorithmAg) for @ = 0.002 and Laplacian |4

From the above simulations we note that for the same values #8igorithms (A2) and Agz) appear
to be faster than AlgorithmA;). However, if a small error between the estimates and thenmder is
desired, than the value af that can achieve this error may result to be considerabldl,samal therefore
the rate of convergencé\{) and (Az) is decreased considerable. For example, to achieve aageverror
of 0.2, the value of alpha should be roughly= 0.0001. In the case of AlgorithmAq), as long asx
is chosen to ensure the stability of the iteration, the ayemror will always converge to zero. Figure
6 shows the evolution of the average errors for the three dgos. In the case of AlgorithmA;) we
chosea = 0.01, which ensures the stability of the algorithm. In the cak@lgorithm (A2) and Az), we
chosea = 0.0001, so that the desired precision is reached. As expeatgdrithm (A1) converge much
faster than the consensus-based algorithms. In conclugipnecision is required than AlgorithmAg)
would be the most indicated. If however we are willing to fam precision to gain higher rate of the
convergence, than the consensus-based distributedtalgoare more suitable.
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Fig. 5: Convergence of Algorithmg\{), (A2) and @Asz) for a = 0.003

IX. CONCLUSIONS

We presented a distributed algorithm for solving a paréicuype of optimization problems. In this
problem, the cost function is expressed as a sum of functéms each agent is aware of only one
function of the sum. We demonstrated the non-heuristicreatd the algorithm by showing that it is
the byproduct of applying a first-order method for solving first order necessary conditions of a lifted
optimization problem; optimization problem whose solatembeds the solution of our original problem.
We presented a convergence analysis of the algorithm angeshqualitatively how the connectivity of
the network influences the rate of convergence. In additi@nrevisited two consensus-based distributed
algorithms and gave flicient conditions so that their use can be extended to nowegocost functions.
We showed that when a constant step-size is used, unlikelgonithm, the consensus-based algorithms
do not guarantee convergence to a local minimizer even wihernitial values of the agents are near a
local minimizer, so that stability is ensured.
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