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Abstract: Stochastic vector quantization methods have been extensively studied as supervised (classifica-
tion) and unsupervised (clustering) learning algorithms, due to being online, data-driven, interpretable,
robust, and fast to train and evaluate. As prototype-based methods, they depend on a dissimilarity measure.
which, can be shown that, is both necessary and sufficient to belong to the family of Bregman divergences,
if the mean value is used as the representative of the cluster. In this work, we investigate the convergence
properties of stochastic vector quantization (VQ) and its supervised counterpart, Learning Vector
Quantization (LVQ), using Bregman divergences. We employ the theory of stochastic approximation to
study the conditions on the initialization and the Bregman divergence generating functions, under which,
the algorithms converge to desired configurations. These results formally support the use of Bregman
divergences, such as the Kullback-Leibler divergence, in vector quantization algorithms.
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1. INTRODUCTION

Vector quantization methods, originally proposed over 30 years
ago for data compression (Gray, 1990), have been extensively
studied and used as supervised (classification) and unsupervised
(clustering) learning algorithms. Not only they constitute inter-
pretable, robust, data-driven and topology-preserving algorithms
(Uriarte and Martín, 2005), but they can be formulated as online,
stochastic gradient descent algorithms, sparse in the sense of
memory complexity, and fast to train and evaluate.

Despite not being able to compete with the accuracy of the
state-of-the-art deep neural network architectures, they offer, in
many cases, an appealing alternative because of their developed
mathematical theory. As a result, they are still being studied in
conjunction with current neural network architectures (Saralajew
et al., 2018; Villmann et al., 2017a; Shah and Koltun, 2018), and
still being used in standard classification problems (Villmann
et al., 2017b), data clustering (Shah and Koltun, 2018), time
series and speech analysis (Melchert et al., 2016; Wang et al.,
2019), biomedical applications (Biehl, 2017), and topological
data analysis (Zielinski et al., 2018). Recently, LVQ methods
have shown impressive robustness against adversarial attacks,
suggesting a valid reason to deploy them instead of neural
network architectures in security critical applications (Saralajew
et al., 2019).

As prototype-based learning methods, VQ and LVQ are usually
based on metrics, such as the Euclidean distance. However, the
utilization of non-standard metrics and general dissimilarity
measures, has become a topic of increasing importance in
data processing and pattern recognition, and in the case of
prototype-based learning, the so called Bregman divergences,
have recently been acknowledged to play an important role
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(Banerjee et al., 2005; Mwebaze et al., 2011; Villmann and
Haase, 2011; Villmann et al., 2010). A key property of the
family of Bregman Divergences is that their use as a distortion
measure, is both sufficient and necessary for choosing the mean
as a representative of a random set, when trying to minimize
the expected value of the distortion. In addition, due to the
correspondence between exponential families and Bregman
divergences, the efficiency of soft-clustering algorithms using
Expectation-Maximization (EM) methods, and Deterministic
Annealing approaches (Rose, 1998), can be greatly improved
(Banerjee et al., 2005).

Batch algorithms for Vector Quantization, which is a non-
convex optimization problem, based on the generalized Linde-
Buzo-Gray (LBG) algorithm (Gersho and Gray, 2012), have
been shown to converge to a local minimum of the average
distortion, if and only if a Bregman divergence is used as
a distortion measure (Banerjee et al., 2005). On the other
hand, convergence analysis of stochastic VQ and LVQ, which
are, many times, preferred over batch learning algorithms
due to their iterative nature, is more involved (Bottou, 1998;
Bottou and Bengio, 1995; Baras and LaVigna, 1991; Baras
and Dey, 1999). The reason is that they are stochastic, non-
convex optimization problems, with not differentiable cost
functions (although the latter can be dealt with by introducing
differentiable approximations (Sato and Yamada, 1996; Hammer
and Villmann, 2002; Nova and Estévez, 2016, 2014)). To
our knowledge, convergence has only been studied under the
assumption of using metrics.

In this work, we focus on the convergence properties of stochas-
tic Vector Quantization (VQ) and Learning Vector Quantization
(LVQ) using Bregman divergences as dissimilarity measures. We
employ mathematical tools from stochastic approximation and
control theory (Benveniste et al., 2012; Borkar, 2009; Bottou,



1998) to investigate the conditions on the initialization and the
Bregman divergence generating functions, under which, the
algorithms converge. By making use of the o.d.e. method, we
show convergence to desired configurations through standard
Lyapunov stability arguments on their limiting ordinary differen-
tial equations. These results formally support the use of Bregman
divergences, such as the Kullback-Leibler divergence, in vector
quantization algorithms.

The rest of the paper is organized as follows: Section 2 defines
the Bregman Divergences and introduces the stochastic approx-
imation theory, and Sections 3 and 4 study the convergence
properties of VQ and LVQ algorithms. In Section 5, initialization
methods, LVQ variants, and practical applications are discussed,
and, finally, Section 6 concludes the paper.

2. PRELIMINARIES

2.1 Bregman Divergences

A Bregman Divergence is a dissimilarity measure d : H ×
H→ [0,∞), where H is a normed vector space, that generalizes
the notion of a metric, and, in general, may not be symmetric
or satisfy the triangle inequality. Formally it is defined in the
following:
Definition 1 (Bregman Divergence). Let φ : H → R, be a
strictly convex function defined on a normed vector space
dom(φ) = H such that φ is twice F-differentiable on H. The
Bregman divergence dφ : H×H→ [0,∞) is defined as:

dφ (x,µ) = φ (x)−φ (µ)− ∂φ

∂ µ
(µ)(x−µ) ,

where x,µ ∈ H, and the continuous linear map ∂φ

∂ µ
(µ) : H→ R

is the Fréchet derivative of φ at µ .

In this work, we will concentrate on nonempty, convex sets
S ⊆ H, where H is a finite dimensional Hilbert space, and in
particular, H =Rd , where, in view of the Riesz-Fréchet theorem,
and under the Euclidean inner product 〈x,y〉= xT y, it is common
to denote ∂φ

∂ µ
(µ)s = 〈∇φ(µ),s〉 , ∀s ∈ H, so that the derivative

of dφ with respect to the second argument can be written as

∂dφ

∂ µ
(x,µ) =

∂φ(x)
∂ µ

− ∂φ(µ)

∂ µ
− ∂ 2φ(µ)

∂ µ2 (x−µ)+
∂φ(µ)

∂ µ

=−∂ 2φ(µ)

∂ µ2 (x−µ) =−
〈
∇

2
φ(µ),(x−µ)

〉
where x,µ ∈ S, ∂

∂ µ
represents differentiation with respect to

the second argument of dφ , and ∇2φ(µ) represents the Hessian
matrix of φ at µ .
Example 1. As a first example, φ(x) = 〈x,x〉 , x ∈Rd , gives the
squared Euclidean distance

dφ (x,µ) = ‖x−µ‖2

for which ∂dφ

∂ µ
(x,µ) =−2(x−µ).

Example 2. Another interesting Bregman divergence, delin-
eating the connection to information theory, is the generalized
I-divergence which results from φ(x) = 〈x, logx〉 , x ∈Rd

++ such
that

dφ (x,y) = 〈x, logx− log µ〉−〈1,x−µ〉

for which ∂dφ

∂ µ
(x,µ) =−diag−1(µ)(x−µ), where 1 ∈Rd is the

vector of ones, and diag−1(µ) ∈ Rd×d
++ is the diagonal matrix

with diagonal elements the inverse elements of µ . It is easy to see
that φ(x) reduces to the ubiquitous KL-divergence if 〈1,x〉= 1.

An extensive overview of Bregman divergences in Vector
Quantization applications can be found in (Banerjee et al., 2005).
We summarize their key property in the following:
Theorem 1. Let X : Ω→ S be a random variable defined in
the probability space (Ω,F,P) such that E [X ] ∈ ri(S), and let
a distortion measure d : S× ri(S)→ [0,∞), where ri(S) denotes
the relative interior of S. Then µ ,E [X ] is the unique minimizer
of E [d (X ,s)] in ri(S), if and only if d is a Bregman Divergence
for any function φ that satisfies the definition.

Proof. For necessity, identical arguments as in Appendix B of
(Banerjee et al., 2005) are followed. For sufficiency, extending
the work of Banerjee et al. (Banerjee et al., 2005), for any
distribution of X :

E
[
dφ (X ,s)

]
−E

[
dφ (X ,µ)

]
=

= φ(µ)+
∂φ

∂ µ
(µ)(E [X ]−µ)−φ(s)− ∂φ

∂ s
(s)(E [X ]− s)

= φ(µ)−φ(s)− ∂φ

∂ s
(s)(µ− s) = dφ (µ,s)≥ 0, ∀s ∈ S

with equality holding only when s = µ by the strict convexity
of φ , which completes the proof.

2.2 Stochastic Approximation

Theorem 2 ((Borkar, 2009)). Almost surely, the sequence
{xn} ∈ Rd generated by the following stochastic approximation
scheme:

xn+1 = xn +α(n) [h(xn)+Mn+1] ,n≥ 0 (1)
with prescribed x0, converges to a (possibly sample path
dependent) compact, connected, internally chain transitive,
invariant set of the o.d.e:

ẋ(t) = h(x(t)) , t ≥ 0, (2)
where x : R+ → Rd and x(0) = x0, provided the following
assumptions hold:

(A1) The map h : Rd → Rd is Lipschitz, i.e., ∃L with 0 < L < ∞

such that ‖h(x)−h(y)‖ ≤ L‖x− y‖ , x,y ∈ Rd ,
(A2) The stepsizes {α(n) ∈ R++, n≥ 0} satisfy ∑n α(n) = ∞,

and ∑n α2(n)< ∞ ,
(A3) {Mn} is a martingale difference sequence with respect to

the increasing family of σ -fields Fn , σ (xm,Mm, m≤ n),
n≥ 0, i.e., E [Mn+1|Fn] = 0 a.s., for all n≥ 0, and, further-

more, {Mn} are square-integrable with E
[
‖Mn+1‖2 |Fn

]
≤

K
(

1+‖xn‖2
)
, a.s., where n≥ 0 for some K > 0,

(A4) The iterates {xn} remain bounded a.s., i.e., supn ‖xn‖< ∞

a.s.

Given the conditions of Theorem 2, the following criteria for
global and local convergence, respectively, hold:
Corollary 2.1 ((Borkar, 2009)). Suppose there exists a radially
unbounded Lyapunov function V , i.e., a continuously differen-
tiable function V : Rd → [0,∞) such that lim‖x‖→∞ V (x) = ∞,
H ,

{
x ∈ Rd : V (x) = 0

}
6= /0, and 〈h(x),∇V (x)〉 ≤ 0 with the

equality holding if and only if x ∈ H. Then, almost surely, {xn}
converge to an internally chain transitive invariant set contained
in H. If, the only internally chain transitive invariant sets for
(2) are isolated equilibrium points, then, almost surely, {xn}
converges to a possibly sample dependent equilibrium point.



Corollary 2.2 ((Benveniste et al., 2012) Corollary 6, p.46).
Assume x∗ is a locally asymptotically stable equilibrium of (2)
with domain of attraction D∗, and let Q be a compact subset of
D∗. If xn ∈ Q for infinitely many n, then

lim
n→∞

xn = x∗ a.s.

3. CONVERGENCE OF STOCHASTIC VECTOR
QUANTIZATION

In this section, we focus on the unsupervised problem of
prototype-based clustering. One can show based on Theorem 1,
that the use of Bregman divergences in batch algorithms based on
the generalized Lloyd algorithm, is both necessary and sufficient
for local convergence (Banerjee et al., 2005). We extend this
result to prove convergence of the stochastic Vector Quantization
algorithm (Kohonen, 1995) based on Bregman divergences.

We begin with the definition of a Voronoi partition:
Definition 2 (Voronoi Partition). Let Sh ⊆ S, h = 1, . . . ,k, such

that V , {Sh}k
h=1 forms a partition of S, i.e.

k⋃
h=1

Sh = S, and

Si
⋂

S j = /0, i 6= j ∈ {1, . . . ,k}. Then V is called a Voronoi
partition with respect to M , {µh}k

h=1 ∈ Sk, if

Sh =

{
X ∈ S : h = argmin

τ=1,...,k
d(X ,µτ)

}
, h = 1, . . . ,k.

where d : S× S→ [0,∞). If d ≡ dφ is a Bregman divergence
for an appropriately defined function φ , then Sh are convex,
since the locus of equidistant points between two different points
µ1 6= µ2 ∈ S is a hyperplane.

Then, the problem of divergence-based Vector Quantization can
be stated as an optimization problem:
Problem 1. Let X : Ω→ S be a random variable defined in
the probability space (Ω,F,P), and dφ : S× ri(S)→ [0,∞) be
a Bregman divergence with properly defined function φ . Let
V , {Sh}k

h=1 be a Voronoi partition of S with respect to dφ and
M , {µh}k

h=1, such that µh ∈ ri(Sh), h∈K, K , {1, . . . ,k}, and
define the quantizer Q : S→ S such that Q(X) =∑

k
h=1 µh1[X∈Sh].

Then the problem is formulated as
min
M,V

J(Q), EX
[
dφ (X ,Q(X))

]
⇔ min
{µh}kh=1

J(Q),
k

∑
h=1

EX
[
dφ (X ,µh)1[X∈Sh]

]
,

It is typically the case that the actual distribution of X ∈ S is
unknown, but a set of, independent, observations {Xi}n

i=1 ∈
S that are identically distributed with X , are available. The
stochastic vector quantization algorithm is used when the
observed data are not available a priori but are being acquired
online, or when the processing of the entire dataset in every
iteration is computationally expensive, and is defined recursively
for every t ≥ 0 as:

µ
t+1
h = µ

t
h +α(t)

(
−1[Xt+1∈St+1

h ]

)
∇µh

dφ

(
Xt+1,µ

t
h
)

St+1
h =

{
X ∈ S : h = argmin

τ=1,...,k
dφ (X ,µ t

τ )

}
, h ∈ K

(3)

where µ0
h is given during initialization.

We employ the o.d.e. method introduced in Theorem 2 to show
convergence of Algorithm (3) to a local minimum of J(Q), as

n→ ∞. In what follows we work in the same way for all h ∈ K.
First, we define the functions Θh : Sk×S→ H as

Θh(µ,X) =
(
−1[X∈Sh]

)
∇µh

dφ (X ,µh) (4)

and introduce, for t ≥ 0, the increasing family of σ -fields
Ft , σ

(
µτ

h ,Xτ , τ ≤ t
)
, in order to define, for every t ≥ 0, the

differences
Mt+1

h , Θh(µ
t ,Xt+1)−E

[
Θh(µ

t ,Xt+1)|Ft
]

which are martingale difference sequences, since, by definition,
E
[
Mt+1

h |Ft
]
= 0 almost surely. Intuitively, we have expressed

Θh(µ
t ,Xt+1) as a perturbation of θ t

h(µ) , E [Θh(µ
t ,Xt+1)|Ft ],

for all t ≥ 0. Given the iid assumption on {X t}n
t=1, it is

reasonable to assume the Markov property
P[g(Xt ,µ

t
h)|Ft ] = P[g(Xt ,µ

t
h)|µ t

h] a.s.
for every Borel measurable positive function g such that
E
[∣∣g(Xt ,µ

t
h)
∣∣]< ∞. Therefore, we can write

θ
t
h(µ) = E

[
Θh(µ

t ,Xt+1)|Ft
]
= E

[
Θh(µ

t ,Xt+1)|µ t
h
]

a.s.
(5)

In other words, algorithm (3) is a stochastic approximation
algorithm:

µ
t+1 = µ

t +α(t)
[
θ

t(µ)+Mt+1] (6)

where µ t =
[
µ t

1, . . . ,µ
t
k

]T , Mt =
[
Mt

1, . . . ,M
t
k

]T , and θ t(µ) =[
θ t

1(µ), . . . ,θ
t
k(µ)

]T . In order for (6) to satisfy the conditions
of Theorem 2, we first select the stepsizes {α(t)}t≥0 to satisfy
(A2), and define the functions

θh(µ) = lim
t→∞

E
[
Θh(µ

t ,Xt+1)|µ t
h
]

=−EX
[
1[X∈Sh]∇µhdφ (X ,µh)

] (7)

where, the expectation operator EX [·] is with respect to the
random variable X , given the values of µh,Sh. In order to satisfy
(A1), and (A3), we limit the choices of the Bregman divergence
generating functions to those that satisfy the assumption:
Assumption 1. The strictly convex functions φ : H → R are
two times continuously F-differentiable on H, and ∂ 2φ(µ)

∂ µ2 is a

Lipschitz bounded linear map for all µ ∈ S, such that ∂dφ

∂ µ
(x,µ) is

Lipschitz continuous in S, and
∥∥∇µ dφ (x,µ)

∥∥2 ≤ K0(1+‖µ‖2)
for some K0 > 0.

We note that φ functions commonly used in defining Bregman
divergences, such as the Euclidean, Mahalanobis and Itakura-
Saito distance, as well as the generalized Kullback-Leibler (I)
divergence, all satisfy Assumption 1. For example, as shown in
Example 2, for the I divergence we get ∂ 2φ(µ)

∂ µ2 = diag−1(µ)

which is a Lipschitz bounded linear map for all µ ∈ R++.
Now, each θh(µ), and therefore θ(µ) =

[
θ 1(µ), . . . ,θ k(µ)

]T ,
is Lipschitz continuous. This is easy to see since

θh(µ) =−
∫

Sh

∂

∂ µh
dφ (x,µh)dF(x)

=
∫

Sh

∂ 2

∂ µ2
h

φ(µh)(x−µ)dF(x)

where F(x) = P[x≤ X ]. Therefore, from Lebesgue theory, θh(µ)

is Lipschitz as long as ∂ 2

∂ µ2
h

φ(µh)(x− µ) is Lipschitz, which

is a direct consequence of Assumption 1. Furthermore, given
Algorithm (3), and the fact that µ0 < ∞, we can conclude that
{µ t}n

t=0 remains bounded almost surely. We have already shown
that E

[
Mt+1

h |Ft
]
= 0 a.s., and, under Assumption 1:



E
[∥∥Mt+1

h

∥∥2 |Ft

]
= EX

[∥∥Θh(µ
t ,Xt+1)

∥∥2
]
−
∥∥θ

t
h(µ)

∥∥2

= EX

[∥∥∥1[X∈St+1
h ]∇µh

dφ

(
X ,µ t

h
)∥∥∥2
]

−
∥∥∥EX

[
1[X∈Sh]∇µh

dφ (X ,µh)
]∥∥∥2

≤ K1

(
1+
∥∥µ

t
h

∥∥2
)

(8)

for some K1 > 0. Therefore, by Theorem 2 and Corollary 2.2,
µ t converges to a locally asymptotically stable equilibrium µ∗

of the o.d.e:
µ̇(t) = θ (µ(t)) , t ≥ 0, (9)

where µ : R+→ Sk, and µ(0) = µ0, i.e., limt→∞ µ t = µ∗almost
surely, provided that µ t visits a compact subset of the domain of
attraction D∗ of µ∗ in (9), infinitely often. It should be mentioned
that there is no general theory for the conditions under which
µ visits D∗ infinitely often, which, depends on both the initial
conditions of (3) and the sample path {X t}n

t=1. Regarding the
initial conditions µ0, the convergence results above require that
they are chosen close to a stable point µ∗ of (9), i.e., within the
domain of attraction D∗. We are interested in the asymptotically
stable equilibria of (9). We recall that

θh(µ) =−EX
[
1[X∈Sh]∇µhdφ (X ,µh)

]
=−∇µh

EX
[
1[X∈Sh]dφ (X ,µh)

] (10)

and define the functions Jh(µ) , EX
[
1[X∈Sh]dφ (X ,µh)

]
and

J(µ), ∑
k
h=1 Jh(µ) = EX

[
dφ (X ,Q(X))

]
. Then

θ(µ) =−∇µ J(µ) (11)
where the cost function J ≥ 0 can be treated as a potential
function to be minimized, so that, by standard Lyapunov
stability arguments, if J(µ∗) is a minimum of J, then µ∗ is an
asymptotically stable equilibrium point for (9) for some domain
of attraction D∗. Therefore, we have shown the following:
Theorem 3. The sequence {µ t} generated by the stochastic
vector quantization algorithm (3) converges almost surely to a
local solution µ∗ of Problem 1, as long as the function φ satisfies
Assumption 1, the stepsizes satisfy ∑t α(t) = ∞, ∑t α2(t) < ∞,
and µ t visits a compact subset of the domain of attraction D∗ of
µ∗ infinitely often, µ0 ∈ D∗.

Furthermore, it is easy to see that as the number of clus-
ters goes to infinity, i.e. as k → ∞, then J(Q) → 0, since
EX
[
dφ (X ,µh)1[X∈Sh]

]
→ 0, for all h ∈ K.

4. CONVERGENCE OF LEARNING VECTOR
QUANTIZATION

Learning vector quantization (LVQ) first introduced by Kohonen
(Kohonen, 1995) is the supervised counterpart of the stochastic
vector quantization algorithm, used for approximating the
decision boundary of a pattern classification problem. It uses a
set of training data for which the classes are known to divide
the data space into a number of Voronoi cells represented by
the corresponding Voronoi vectors and their associated class
decisions.We are going to investigate the convergence properties
of LVQ, based on Bregman divergences, in the case of binary
classification, which can easily be generalized to any type
of classification task (see, e.g. (Duda et al., 2012)). Let the
following binary classification problem:
Problem 2. Let {X ,c} ∈ S × {0,1} defined in a probabil-
ity space (Ω,F,P), X : Ω → S be a random variable, and

c : S→{0,1} its associated decision variable, such that c rep-
resents the actual class of X. Let V , {Sh}k

h=1 be a Voronoi
partition of S with respect to dφ and M , {µh}k

h=1 , µh ∈ ri(Sh),

and define Cµ ,
{

cµh

}k
h=1 ,cµh ∈ {0,1} ,h ∈ K, K = {1, . . . ,k},

such that cµh represents the class of µh for all h ∈ K. Define the
quantizer Q : S→{0,1} such that Q(X) = ∑

k
h=1 cµh1[X∈Sh].

The minimum-error classification problem is then formulated as

min
{µh}kh=1

JB(Q), π1 ∑
H0

P1 [X ∈ Sh]+π0 ∑
H1

P0 [X ∈ Sh]

= πi +∑
Hi

(
π jP j [X ∈ Sh]−πiPi [X ∈ Sh]

)
where πi = P [c = i] ,Pi {·} = P{·|c = i}, and Hi is defined as
Hi =

{
h ∈ {1, . . . ,k} : cµh = i

}
, i, j ∈ {0,1} , i 6= j.

Remark 1. We can generalize the definition of the minimum-
error cost function JB to a minimum-risk cost function

JR(Q) = π1 ∑
H0

E1
[
R(X)1[X∈Sh ]

]
+π0 ∑

H1

E0
[
R(X)1[X∈Sh ]

]
where Ei denotes the expected value with respect to Pi, i, j ∈
{0,1} , i 6= j, and R : S→ R+ is a risk function which assigns a
miss-classification cost to each element in the domain of X.

Typically, the distribution of {X ,c} is not known, and, a
sequence {Xi,ci}n

i=1 of independent random variables identically
distributed with {X ,c} is being observed. The Learning Vector
Quantization algorithm (LVQ) can be used when the observed
data are not available a priori but are being acquired online, when
the class indices of some observed data are not known apriori for
training and need to be discovered, or when the processing of
the entire dataset in every iteration is computationally expensive,
and is defined recursively as follows{

µ
t+1
h = µ

t
h−α(t)∇µh

dφ

(
Xt+1,µ

t
h
)
, if ct+1 = ct

µh

µ
t+1
h = µ

t
h +α(t)∇µh

dφ

(
Xt+1,µ

t
h
)
, if ct+1 6= ct

µh

(12)

where h = argmin
τ=1,...,k

dφ (X t+1,µ t
τ), and µ0

h is given. We can write

the LVQ algorithm as

µ
t+1
h = µ

t
h +α(t)Θh(µ

t ,Ct
µ ,Xt+1,ct+1)∇µh

dφ

(
Xt+1,µ

t
h
)

St+1
h =

{
X ∈ S : h = argmin

τ=1,...,k
dφ (X ,µ t

τ )

}
, h = 1, . . . ,k

(13)

where, following the same methodology as in Section 3 for all
h ∈ K, we have defined the functions

Θh(µ,Cµ ,X ,c) =
(
−1[X∈Sh ]

)(
1[c=cµh ]

−1[c6=cµh ]

)
∇µh

dφ (X ,µh) ,

as well as the martingale difference sequences

Mt+1
h , Θh(µ

t ,Ct
µ ,Xt+1,ct+1)−E

[
Θh(µ

t ,Ct
µ ,Xt+1,ct+1)|Ft

]
,

where Ft , σ
(
µτ

h ,Xτ ,cτ , τ ≤ t
)
, for t ≥ 0, and, assuming simi-

lar independence and Markov properties as in Section 3, the func-
tions θ t

h(µ) , E
[
Θh(µ

t ,Ct
µ ,Xt+1,ct+1)|Ft

]
= E

[
Θh(µ

t ,Ct
µ ,Xt+1,ct+1)|µ t

h

]
a.s. Now (13) is a stochastic approximation algorithm in the
form of (6) with stepsizes {α(t)}t≥0 satisfying (A2), while
(A1), and (A3) are satisfied by Assumption 1, since θ(µ) =[
θ 1(µ), . . . ,θ k(µ)

]T is Lipschitz continuous, with

θh(µ) = EX
[
Θh(µ,Cµ ,X ,c)

]
= π0E0

[
Θh(µ,Cµ ,X ,c)

]
+π1E1

[
Θh(µ,Cµ ,X ,c)

]
=−δµh

(
π0E0

[
1[X∈Sh ]

∇µh
dφ (X ,µh)

]
− π1E1

[
1[X∈Sh ]

∇µh
dφ (X ,µh)

])
,

(14)



where δµh =

{
1, cµh = 0
−1, cµh = 1

, and E
[∥∥Mt+1

h

∥∥2 |Ft

]
≤ K1 (1+∥∥µ t

h

∥∥2
)

for some K1 > 0. However there is no guarantee that

(A4) will be satisfied, i.e. supt
∥∥µ t

h

∥∥ < ∞ a.s., and, in fact, in
some cases the centroids µh, h ∈ K may diverge. Many variants
of Algorithm (13) have been proposed to overcome this issue,
as explained in Section 5, while, in an attempt to keep the same
algorithm, Baras et. al in (Baras and LaVigna, 1991) proposed
changing the decision policy of each centroid so that cµh is
updated in each iteration, according to the majority vote criterion,
on the classes of the data in Sh. For now, we will assume that
supt

∥∥µ t
h

∥∥< ∞ a.s, and conclude that, according to Theorem 2
and Corollary 2.2, µ t converges to a local asymptotically stable
equilibrium µ∗ of the o.d.e:

µ̇(t) = θ (µ(t)) , t ≥ 0, (15)

where µ : R+ → Sk, and µ(0) = µ0, provided that µ t visits a
compact subset of the domain of attraction D∗ of µ∗, infinitely
often. At this point, we seek potential asymptotically stable
equilibrium points of (15). We note that

θh(µ) =−δµh

(
π0E0

[
1[X∈Sh ]

∇µh
dφ (X ,µh)

]
−π1E1

[
1[X∈Sh ]

∇µh
dφ (X ,µh)

])
=−δµh ∇µh

(
π0E0

[
1[X∈Sh]

dφ (X ,µh)
]
−π1E1

[
1[X∈Sh ]

dφ (X ,µh)
])

(16)
and define the functions

JLh (µ), δµh

(
π0E0

[
1[X∈Sh ]

dφ (X ,µh)
]
−π1E1

[
1[X∈Sh]

dφ (X ,µh)
])

and JL(µ), ∑
k
h=1 Jh(µ), where it is easy to show that

JL =
k

∑
h=1

δµh

(
π0E0

[
1[X∈Sh ]

dφ (X ,µh)
]
−π1E1

[
1[X∈Sh ]

dφ (X ,µh)
])

= J(Q)−2Jdφ
(Q)

with J(Q) = ∑
k
h=1E

[
dφ (X ,µh)1[X∈Sh]

]
being the quantization

error, and
Jdφ

(Q) = π1 ∑
H0

E1
[
dφ (X ,µh)1[X∈Sh ]

]
+π0 ∑

H1

E0
[
dφ (X ,µh)1[X∈Sh ]

]
being the minimum risk error associated with the risk function
R(X)≡ dφ (X ,µh), for all h ∈ K. It is easy to see that, −J(Q)≤
JL ≤ J(Q). However, if in each cluster Sh, h = 1, . . . ,k, with
cµh = i, i ∈ {0,1}, it holds that

πiEi
[
1[X∈Sh]dφ (X ,µh)

]
≥ π jE j

[
1[X∈Sh]dφ (X ,µh)

]
(17)

then it follows that 0≤ JL ≤ J(Q), and the cost function JL can
be treated as a potential function, such that,

θ(µ) =−∇µ JL(µ) (18)
The assumption that the class cµh of µh corresponds to the class
with the highest risk inside Sh, i.e. that (17) holds, is not so
restrictive, as this holds true when the size of the Voronoi regions
Sh gets smaller and the majority of the training samples inside
Sh belong to class c = i, which is the case after some iterations
of the algorithm. This can also be ensured by modifying the
decision policy of the LVQ algorithm to incorporate an extension
of the majority vote correction proposed in (Baras and LaVigna,
1991). Therefore, by standard Lyapunov stability arguments,
µ∗, for which JL is minimized, is an asymptotically stable
equilibrium point for (15) for some domain of attraction D∗,
such that, as the number of samples goes to infinity, then (13)
moves µ → µ∗, which, at least locally, minimizes JL. Since
JL = J(Q)−2Jdφ

(Q)≥ 0, it follows that Jdφ
(Q)≤ 1

2 J(Q), that is,
the misclassification risk is bounded above by a proportion of the
clustering distortion. If, in addition, the number of clusters goes
to infinity, i.e., if k = kt → ∞, it holds that J(Q)→ 0. Therefore,

Jdφ
(Q) → 0 as well, and, because the size of the clusters

Sh, h = 1, . . . ,k goes to zero, following the arguments used
in Ch.21, (Devroye et al., 2013), for convergence of Voronoi-
type partitions, and assuming limt→∞ k2

t
log t

t → 0, this implies
that JB(Q) is minimized and that algorithm (13) converges to
the Bayes classification error almost surely. Therefore, we have
shown the following:
Theorem 4. The sequence {µ t} generated by the learning
vector quantization algorithm (13) converges almost surely
to a solution µ∗ of Problem 2, as k = kt → ∞, provided
that limt→∞ k2

t
log t

t → 0, ∑t α(t) = ∞, ∑t α2(t) < ∞, µ t visits
a compact subset of the domain of attraction D∗ of µ∗ infinitely
often, µ0 ∈ D∗, supt ‖µ t‖< ∞ a.s., and the function φ satisfies
Assumption 1.

5. INITIALIZATION, VARIANTS, AND PRACTICAL
IMPLICATIONS

It is apparent in the analysis of algorithms (3) and (13) that the
initial configuration, as well as the number k of the clusters, play
a key role in both the point of convergence, and the final mini-
mum distortion achieved. This phenomenon is common in non-
convex stochastic optimization problems, and annealing methods
for avoiding local minima have been proposed, (Kirkpatrick
et al., 1983; Rose, 1998). In particular, Deterministic Annealing
(DA) (Rose, 1998; Miller et al., 1996) approaches, which make
use of Gibbs distribution functions, become computationally
simpler when based on Bregman divergences, due to their
correspondence with exponential families (Banerjee et al., 2005),
and can be used as a first step before applying vector quantization
algorithms.

In order to guarantee satisfaction of Assumption (A4), Kohonen
in (Kohonen, 1995) initially proposed LVQ2.1, and Sato et. al
in (Sato and Yamada, 1996) extended it to the Generalized LVQ
algorithm:

µ
t+1
h = µ

t
h−α(t)∇µh

f
(
Xt+1,µ

t
h,µ

t
l
)

µ
t+1
l = µ

t
l −α(t)∇µl

f
(
Xt+1,µ

t
h,µ

t
l
)
,

(19)

where h = argminτ:cµτ =ct dφ (X t+1,µ t
τ ), l = argminτ:cµτ 6=ct dφ (X t+1,µ t

τ ), µ0
h

is given, and the function f : S× S× S→ R is carefully selected
(Sato and Yamada, 1996). Although out of the scope of this paper,
the proposed methodology can be applied to show that, under
the same assumptions, LVQ2.1 and GLVQ, minimize, at least
locally and as t,k→ ∞, their error functions J = E

[
f
(
Xt+1,µ

t
h,µ

t
l

)]
with f depending on the algorithm. This leads to approximation
of the Bayes decision boundary, as well.

The results presented in this work formally support the use
of the family of Bregman divergences in vector quantization
algorithms, which, because of their developed mathematical
theory, can be used, in conjunction with current neural network
architectures, in classification and clustering problems, time
series analysis, biomedical applications, topological data anal-
ysis, and adversarial learning, where the robustness of LVQ
methods against adversarial attacks has been promising. On
the other hand, Bregman divergences, such as the Kullback-
Leibler divergence, are mathematically related to various types
of classification errors (via Stein’s Theorem), which makes
the associated learning algorithms more robust than algorithms
based on Euclidean or other metrics for dissimilarity. For this
reason, they consist a powerful tool when combined with VQ
and LVQ learning algorithms. This aligns with the state of the
art deep neural network architectures that are shifting from
using the Euclidean measure (the simplest Bregman divergence



which is, at the same time, a metric) towards information-
theoretic measures such as the unnormalized Kullback-Leibler
divergence.

As a final note, the connection between vector quantization
and stochastic approximation algorithms, suggests that further
investigation may lead to interesting results on the convergence
rates, as well as to the analysis of variants of these algorithms,
such as Kohonen’s Self Organizing Map.

6. CONCLUSION

In this work, we investigated the convergence of the unsuper-
vised, stochastic vector quantization algorithm, and its super-
vised counterpart, learning vector quantization, based on Breg-
man divergences as dissimilarity measures. The convergence
properties of the algorithms do not depend on the particular
choice of the Bregman divergence, as long as its generating
function satisfies the conditions mentioned, but, as expected, are
shown to depend on conditions related to both the initialization
of the weights and the given sample path. Our results formally
support the use of Bregman divergences, such as the Kullback-
Leibler divergence, in VQ and LVQ algorithms. The connection
between vector quantization and stochastic approximation algo-
rithms, shows that further investigation may lead to interesting
results on the convergence rates, as well as to the analysis of
variants of these algorithms.
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